首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium.

Results

The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure.

Conclusion

This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-923) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
Abstract

A small DNA fragment (approx. 350 base pairs) from the genome of the potato cyst nematode Globodera pallida Pa2/3 was cloned in a bacterial plasmid. When used as a probe in dot-blot DNA hybridisations against a range of nematodes, the cloned DNA bound to G. pallida Pa2/3 but not to Globodera rostochiensis Rol. The cereal cyst nematode Heterodera avenae, the clover cyst nematode Heterodera trifolii, the root knot nematodes Meloidogyne hapla and Meloidogyne incognita, and the beet cyst nematode Heterodera schactii did not cross-hybridise. This probe can detect as few as six larvae of G. pallida.  相似文献   

5.

Aims

Arbuscular mycorrhizal fungi (AMF) can control root-knot nematode infection, but the mode of action is still unknown. We investigated the effects of AMF and mycorrhizal root exudates on the initial steps of Meloidogyne incognita infection, namely movement towards and penetration of tomato roots.

Methods

M. incognita soil migration and root penetration were evaluated in a twin-chamber set-up consisting of a control and mycorrhizal (Glomus mosseae) plant compartment (Solanum lycopersicum cv. Marmande) connected by a bridge. Penetration into control and mycorrhizal roots was also assessed when non-mycorrhizal or mycorrhizal root exudates were applied and nematode motility in the presence of the root exudates was tested in vitro.

Results

M. incognita penetration was significantly reduced in mycorrhizal roots compared to control roots. In the twin-chamber set-up, equal numbers of nematodes moved to both compartments, but the majority accumulated in the soil of the mycorrhizal plant compartment, while for the control plants the majority penetrated the roots. Application of mycorrhizal root exudates further reduced nematode penetration in mycorrhizal plants and temporarily paralyzed nematodes, compared with application of water or non-mycorrhizal root exudates.

Conclusions

Nematode penetration was reduced in mycorrhizal tomato roots and mycorrhizal root exudates probably contributed at least partially by affecting nematode motility.  相似文献   

6.
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.  相似文献   

7.
Tarek Hewezi 《Plant physiology》2015,169(2):1018-1026
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization.The root-knot (Meloidogyne spp.) and cyst (Globodera and Heterodera spp.) nematodes are sedentary endoparasites of the root system in a wide range of plant species. These obligate parasites engage in intricate relationships with their host plants that result in the transformation of normal root cells into specialized feeding sites, which provide the nematodes with all the nutrients required for their development. The initiation and maintenance of functional feeding cells by root-knot nematodes (giant cells) and cyst nematodes (syncytia) seems to be a dynamic process involving active dialogue between the nematodes and their host plants. The nematodes use their stylet, a needle-like apparatus, to deliver effector proteins into the host cells (Williamson and Hussey, 1996; Davis et al., 2004). These effector proteins are mainly synthesized in the nematode esophageal glands, which consist of one dorsal cell and two subventral cells. The activity of these glands is developmentally regulated, with secretions from the two subventral glands being most dynamic during the early stage of infection, consisting of root penetration, migration, and feeding site initiation. Secretions from the single dorsal cell seem to be more active during the sedentary stage of nematode feeding (Hussey and Mims, 1990).Recent progress in the functional characterization of effector proteins from a number of phytonematodes has elucidated diverse mechanisms through which these effectors facilitate the nematode parasitism of host plants. One such mechanism involves depolymerization of the main structural polysaccharide constituents of the plant cell wall by using a diverse collection of extracellular effector proteins (Davis et al., 2011; Wieczorek, 2015). Another mechanism includes the molecular mimicry of host proteins in both form and function (Gheysen and Mitchum, 2011). This strategy could be highly successful when the nematode-secreted effectors imitate host functions to subvert cellular processes in favor of nematodes while escaping the regulation of host cellular processes. Another mechanism of effector action is the modulation of central components of auxin signaling to apparently generate unique patterns of auxin-responsive gene expression, leading to numerous physiological and developmental changes required for feeding site formation and development (Cabrera et al., 2015). In addition, cyst and root-knot nematodes have evolved to efficiently suppress defense responses during their prolonged period of sedentary biotrophic interaction with their hosts. Accordingly, a large number of nematode effectors are engaged in suppressing host immune responses and defense signaling (Hewezi and Baum, 2013; Goverse and Smant, 2014). Finally, there is accumulating evidence that nematode effector proteins target and exploit the host posttranslational machinery to the parasite’s advantage. Posttranslational modifications (PTMs) are tightly controlled and highly specific processes that enable rapid cellular responses to specific stimuli without the requirement of new protein synthesis (Kwon et al., 2006). Phosphorylation, ubiquitination, and histone modifications, among others, have recently been identified as fundamental cellular processes controlling immune signaling pathways (Stulemeijer and Joosten, 2008; Howden and Huitema, 2012; Marino et al., 2012; Salomon and Orth, 2013). This finding underscores the importance of targeting and coopting host posttranslational machinery by pathogen effectors to exert their virulence functions. Here, we review recent progress in the functional characterization of nematode effector proteins and the parasitic strategies that involve modifications of the plant cell wall, molecular mimicry of host factors, alteration of auxin signaling, subversion of defense signaling, and targeting and utilizing the host posttranslational machinery.  相似文献   

8.
9.

Aims

The biocontrol potential of three Bacillus species, namely Bacillus subtilis (BS), Bacillus firmus (BF), and Bacillus coagulans (BC) was tested against the root-knot nematode Meloidogyne javanica (Treub) Chitwood in eggplants (Solanum melongena L.). Plant growth and biochemical effects were also measured in these interactions.

Methods

Bacillus species were inoculated in soil around the seedlings of eggplants (Solanum melongena L.) with and without nematodes in a greenhouse experiment. Plant growth, biochemical changes, and nematode parasitism were observed at 15 and 45 days after inoculation (DAI).

Results

BC significantly enhanced plant growth, chlorophyll “b” and total chlorophyll contents, and polyphenol oxidase (PPO) activity in the leaves of eggplants, while BS showed greatest reduction in root-knot nematode parasitism. Non-infected and untreated control (C?) plants showed lesser chlorophyll “b,” carotenoids, soluble protein contents, and guaiacol peroxidase but higher catalase and PPO activities compared to infected and untreated controls (C+) at 15 and 45 DAI. Superoxide dismutase activity declined in most of the treated plants at 45 DAI following rise at 15 DAI. Ascorbate peroxidase activity increased at 45 DAI compared to 15 DAI in C? and C+ plants. PAL activity was greatly enhanced at 45 DAI in all treatments and controls over that at 15 DAI.

Conclusions

BC is a potentially plant growth-promoting bacteria although it was less effective against nematode infection compared to BS. Enzymes activities varied with infection and DAI. BC at 15 DAI in general increased the activity of most of the stress enzymes and thereby overcoming the effect of nematode parasitism.  相似文献   

10.
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.  相似文献   

11.
12.

Key message

The plant genetic background influences the efficiency of major resistance genes to root-knot nematodes in pepper and has to be considered in breeding strategies.

Abstract

Root-knot nematodes (RKNs), Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, nematode populations proved able to breakdown plant resistance, and genetic resources in terms of resistance genes (R-genes) are limited. Sustainable management of these valuable resources is thus a key point of R-gene durability. In pepper, Me1 and Me3 are two dominant major R-genes, currently used in breeding programs to control M. arenaria, M. incognita and M. javanica, the three main RKN species. These two genes differ in the hypersensitive response induced by nematode infection. In this study, they were introgressed in either a susceptible or a partially resistant genetic background, in either homozygous or heterozygous allelic status. Challenging these genotypes with an avirulent M. incognita isolate demonstrated that (1) the efficiency of the R-genes in reducing the reproductive potential of RKNs is strongly affected by the plant genetic background, (2) the allelic status of the R-genes has no effect on nematode reproduction. These results highlight the primary importance of the choice of both the R-gene and the genetic background into which it is introgressed during the selection of new elite cultivars by plant breeders.  相似文献   

13.
14.
15.
Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.  相似文献   

16.
Cyst nematodes are highly evolved sedentary plant endoparasitesthat use parasitism proteins injected through the stylet intohost tissues to successfully parasitize plants. These secretoryproteins likely are essential for parasitism as they are involvedin a variety of parasitic events leading to the establishmentof specialized feeding cells required by the nematode to obtainnourishment. With the advent of RNA interference (RNAi) technologyand the demonstration of host-induced gene silencing in parasites,a new strategy to control pests and pathogens has become available,particularly in root-knot nematodes. Plant host-induced silencingof cyst nematode genes so far has had only limited success butsimilarly should disrupt the parasitic cycle and render thehost plant resistant. Additional in planta RNAi data for cystnematodes are being provided by targeting four parasitism genesthrough host-induced RNAi gene silencing in transgenic Arabidopsisthaliana, which is a host for the sugar beet cyst nematode Heteroderaschachtii. Here it is reported that mRNA abundances of targetednematode genes were specifically reduced in nematodes feedingon plants expressing corresponding RNAi constructs. Furthermore,this host-induced RNAi of all four nematode parasitism genesled to a reduction in the number of mature nematode females.Although no complete resistance was observed, the reductionof developing females ranged from 23% to 64% in different RNAilines. These observations demonstrate the relevance of the targetedparasitism genes during the nematode life cycle and, potentiallymore importantly, suggest that a viable level of resistancein crop plants may be accomplished in the future using thistechnology against cyst nematodes. Key words: beet cyst nematode (BCN), soybean cyst nematode (SCN), host induced, in planta RNAi, resistance, RNAi, transgenic Received 19 August 2008; Revised 25 October 2008 Accepted 27 October 2008  相似文献   

17.
18.
The many decades during which the cultivation of Cannabis sativa (hemp) was strongly restricted by law resulted in little research on potential pathogenic nematodes of this increasingly important crop. The primary literature was searched for hemp-nematode papers, resulting in citations from 1890 through 2021. Reports were grouped into two categories: (i) nematodes as phytoparasites of hemp, and (ii) hemp and hemp products and extracts for managing nematode pests. Those genera with the most citations as phytoparasites were Meloidogyne (root-knot nematodes, 20 papers), Pratylenchus (lesion nematodes, 7) and Ditylenchus (stem nematodes, 7). Several Meloidogyne spp. were shown to reproduce on hemp and some field damage has been reported. Experiments with Heterodera humuli (hop cyst nematode) were contradictory. Twenty-three papers have been published on the effects of hemp and hemp products on plant-parasitic, animal-parasitic and microbivorous species. The effects of hemp tissue soil incorporation were studied in five papers; laboratory or glasshouse experiments with aqueous or ethanol extracts of hemp leaves accounted for most of the remainder. Many of these treatments had promising results but no evidence was found of large-scale implementation. The primary literature was also searched for chemistry of C. sativa roots. The most abundant chemicals were classified as phytosterols and triterpenoids. Cannabinoid concentration was frequently reported due to the interest in medicinal C. sativa. Literature on the impact of root-associated chemicals on plant parasitic nematodes was also searched; in cases where there were no reports, impacts on free-living or animal parasitic nematodes were discussed.  相似文献   

19.
The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second‐stage juveniles (J2s) and sedentary parasitic‐stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号