首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantification of membrane partition potential of drug compounds is of great pharmaceutical interest. Here, a novel approach combining liquid-state NMR diffusion measurements and fast-tumbling lipid/detergent bicelles is used to measure accurately the partition coefficient K(p) of amantadine in phospholipid bilayers. Amantadine is found to have a strong membrane partition potential, with K(p) of 27.6 in DMPC and 37.8 in POPC lipids. Electrostatic interaction also plays a major role in the drug's affinity towards biological membrane as introduction of negatively charged POPG dramatically increases its K(p). Saturation transfer difference experiments in small bicelles indicate that amantadine localizes near the negatively charged phosphate group and the hydrocarbon chain of bilayer lipid. The approach undertaken in this study is generally applicable for characterizing interactions between small molecules and phospholipid membranes.  相似文献   

2.
The spectroscopic properties of a new series of fatty acid analogs in which a dipyrrometheneboron difluoride fluorophore forms a segment of the acyl methylene chain are presented and their characteristics as fluorescent membrane probes are examined. When incorporated as a low mole fraction component in model phospholipid membranes, the probes retain the principal characteristics of the parent fluorophore: green fluorescence emission with high quantum yield, extensive spectral overlap, and low environmental sensitivity. The fluorescence quantum yield is typically two to three times that of comparable membrane probes based on the nitrobenzoxadiazole fluorophore. The spectral overlap results in a calculated F?rster energy transfer radius (Ro) of about 57 A. Consequently, increasing fluorescence depolarization and quenching are observed as the mole fraction of the probe species incorporated in the membrane is increased. Low environmental sensitivity is manifested by retention of high quantum yield emission in aqueous dispersions of fatty acids. Partition coefficient data derived from fluorescence anisotropy measurements and iodide quenching experiments indicate that in the presence of fluid phase phospholipid bilayers the aqueous fraction of fatty acid is very small. Fluorescence intensity and anisotropy responses to phospholipid phase transitions are examined and found to be indicative of nonrandom fluorophore distribution in the gel phase. It is concluded that the spectroscopic properties of the fatty acid probes and their phospholipid derivatives are particularly suited to applications in fluorescence imaging of cellular lipid distribution and membrane level studies of lateral lipid segregation.  相似文献   

3.
The detergents, alkyltrimethylammonium bromide, N-alkyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (zwittergent), alkane sulfonate, alkylsulfate, alkyl-beta-D-glucopyranoside, alkyl-beta-D-maltoside, dodecanoyl-N-methylglucamide, polyethylene glycol monoalkyl ether and Triton X-100, all produce a concentration-dependent acceleration of the slow passive transbilayer movement of NBD-labeled phosphatidylcholine in the human erythrocyte membrane. Above a threshold concentration, which was well below the CMC and characteristic for each detergent, the flip rate increases exponentially upon an increase of the detergent concentration in the medium. The detergent-induced flip correlates with reported membrane-expanding effects of the detergents at antihemolytic concentrations. From the dependence of the detergent concentration required for a defined flip acceleration on the estimated membrane volume, membrane/water partition coefficients for the detergents could be determined and effective detergent concentrations in the membrane calculated. The effective membrane concentrations are similar for most types of detergents but are 10-fold lower for octaethylene glycol monoalkyl ether and Triton X-100. The effectiveness of a given type of detergent is rather independent of its alkyl chain length. Since detergents do not reduce the high temperature dependence of the flip process the detergent-induced flip is proposed to be due to an enhanced probability of formation of transient hydrophobic structural defects in the membrane barrier which may result from perturbation of the interfacial region of the bilayer by inserted detergent molecules.  相似文献   

4.
We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.  相似文献   

5.
The interaction of the human erythrocyte concanavalin A receptor (a subpopulation of Band 3) with phospholipids has been investigated using differential scanning microcalorimetry of reconstituted vesicles prepared by detergent dialysis. The mean diameter of dialyzed phospholipid vesicles jumps dramatically on inclusion of the concanavalin A receptor and then increases linearly with the fraction of protein in the bilayer. The glycoprotein has a dramatic effect on the phospholipid gel to liquid-crystalline phase transition, and ΔH decreases linearly with increasing mole fraction of protein up to a protein/lipid mole ratio of around 1:1160. Extrapolation of this data indicates that each concanavalin A receptor is able to perturb about 685 molecules of dimyristoylphosphatidylcholine, withdrawing them from the main phase transition. The cooperativity of phospholipid melting is profoundly disrupted by small amounts of glycoprotein, with the cooperative unit dropping to less than half its initial values at a protein/lipid mole ratio of 1:3800. A break occurs in the ΔH curve as the protein/lipid mole ratio is increased above 1:1160, and ΔH then increases linearly with increasing amounts of concanavalin A receptor in the bilayer. This phenomenon may be interpreted in terms of protein-protein aggregation which occurs in the phospholipid bilayer above a certain critical mole fraction of concanavalin A receptor, resulting in perturbed phospholipids being returned to the phase transition. In addition, the hydrophilic domains of the glycoprotein may exist in two different conformations depending on the protein concentration in the bilayer, and these may differ in their ability to interact with phospholipid headgroups at the membrane surface.  相似文献   

6.
A lag time during the period of variation in solute concentration in the receiver phase and overshoot in that in the membrane phase have been predicted to occur with a kinetic model for membrane transport which takes into account both the membrane volume and the partitioning kinetics (Makino et al., Biophys. Chem. 35 (1990) 85). The duration of the lag time becomes longest when the donor and receiver phases have the same volume. This maximum grows in length with increase in the partition coefficient, tending to be proportional to the volume fraction of the receiver phase. Moreover, it displays an increase in length with decreasing membrane volume fraction. Overshoot occurs only when the volume fraction of the receiver phase is greater than that of the donor. Overshoot is observed during the earlier stages of membrane transport when the partition coefficient is smaller or the volume fraction of the receiver phase is larger.  相似文献   

7.
Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.  相似文献   

8.
The interaction of surfactants with membranes has been difficult to monitor since most detergents are small organic molecules without spectroscopic markers. The development of high sensitivity isothermal titration calorimetry (ITC) has changed this situation distinctly. The insertion of a detergent into the bilayer membrane is generally accompanied by a consumption or release of heat which can be measured fast and reliably with modern titration calorimeters. It is possible to determine the full set of thermodynamic parameters, i.e., the partitioning enthalpy, the partitioning isotherm, the partition coefficient, the free energy, and the entropy of transfer. The application of ITC to the following problems is described: (i) measurement of the critical micellar concentration (CMC) of pure detergent solutions; (ii) analysis of surfactant-membrane partitioning equilibria, including asymmetric insertion; and (iii) membrane-surfactant phase diagrams. Finally, the thermodynamic parameters derived for non-ionic detergents are discussed and the affinity for micelle formation is compared with membrane incorporation.  相似文献   

9.
According to the liquid hydrocarbon model, the lipid bilayer is viewed simply as a thin slice of bulk hydrocarbon liquid. This allows the water permeability of the bilayer to be calculated from bulk properties. In this paper the prediction of the liquid hydrocarbon model is compared with the known water permeability coefficient of the glycerol monoolein/n-hexadecane bilayer (Fettiplace, R. (1978) Biochim. Biophys. Acta 513, 1–10). As the alkyl chain of glycerol monoolein is equivalent to 8-heptadecene, the water permeability coefficient of 8-heptadecene/n-hexadecane mixtures was measured for temperatures between 20 and 35°C. The mole fraction of n-hexadecane in the bulk liquid was chosen at each temperature to match the known mole fraction of n-hexadecane in the bilayer (White, S. (1976) Nature 262, 421–422). The predicted water permeability coefficient agrees with the measured value at 32°C but is 40% above the measured value at 20°C. The apparent activation energy predicted by the liquid hydrocarbon model is 9.0 ± 0.3 kcal/mol, while the measured value is 14.2 ± 1.0 kcal/mol. The failure of the liquid hydrocarbon model probably results from a different molecular organization of the hydrocarbon chains in the bilayer and in the bulk liquid.  相似文献   

10.
The absorbance maximum, lambda max, of a local anesthetic, benzyl alcohol, is shifted to longer wavelengths when solvent polarity is decreased. The shift was approximately a linear function of the dielectric constant of the solvent. This transition in electronic spectra according to the microenvironmental polarity is used to analyze benzyl alcohol binding to surfactant micelles. A facile method is devised to estimate the micelle/water partition coefficient from the dependence of lambda max of benzyl alcohol on surfactant concentrations. The effective dielectric constants of the sodium decyl sulfate, dodecyl sulfate and tetradecyl sulfate micelles were 29, 31 and 33, respectively. The partition coefficient of benzyl alcohol between the micelles and the aqueous phase was 417, 610 and 1089, respectively, in the mole fraction unit. The pressure dependence of the partition coefficient was estimated from the depression of the critical micelle concentration of sodium dodecyl sulfate by benzyl alcohol under high pressure up to 200 MPa. High pressure squeezed out benzyl alcohol molecules from the micelle until about 120 MPa, then started to squeeze in when the pressure was further increased. The volume change of benzyl alcohol by transfer from the aqueous to the micellar phase was calculated from the pressure dependence of the partition coefficient. The volume change, estimated from the thermodynamic argument, was 3.5 +/- 1.1 cm3.mol-1 at 298.15 K, which was in reasonable agreement with the partial molal volume change determined directly from the solution density measurements, 3.1 +/- 0.2 cm3.mol-1. Benzyl alcohol apparently solvates into the micelles close to surface without losing contact with the aqueous phase.  相似文献   

11.
The effects of the zwitterionic bile derivative 3-((3-deoxycholamidopropyl)dimethyl-ammonio)-1-propanesulfonate (Chaps) on multilamellar phosphatidylcholine liposomes have been characterized. When the surfactant is added to preformed liposome suspensions, equilibrium is attained in less than 6 h. Fifty percent solubilization, as measured by analysis of lipid P in supernatants after solubilization, occurs at a 0.32 lipid/detergent mole ratio for a 1 mM phospholipid concentration. Fifty percent release of entrapped glucose occurs at the same detergent concentration, suggesting that, in this system, no increase in permeability occurs prior to solubilization. A linear relationship is found between phospholipid concentration and amount of surfactant producing 50% solubilization. No lytic effect of Chaps is seen below 2 mM surfactant, this being probably near the critical micellar concentration of the amphiphile under our conditions. In the sublytic range of detergent concentrations, Chaps binds the lipid bilayers with high affinity, so that, at least at 1 mM phospholipid, the amount of free Chaps is negligible; solubilization starts when about two surfactant molecules are incorporated per phospholipid molecule. Differential scanning calorimetry shows that incorporation of Chaps into saturated phosphatidylcholine bilayers, even at concentrations below those producing solubilization, causes a decrease in the Tc gel-to-liquid crystalline main transition temperature of the phospholipid, and a decrease in the transition enthalpy; at the same time, a "shoulder" appears on the low-temperature side of the main endotherm. The ensemble of our data suggests that the behavior of Chaps toward phospholipid bilayers is intermediate between that of the natural bile derivatives and that of some well-known nonionic synthetic surfactants.  相似文献   

12.
Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside   总被引:6,自引:0,他引:6  
The dissolution and formation of egg phosphatidylcholine (PC) vesicles by the detergent octyl glucoside were examined systematically by using resonance energy transfer between fluorescent lipid probes, turbidity, and gel filtration chromatography. Resonance energy transfer was exquisitely sensitive to the intermolecular distance when the lipids were in the lamellar phase and to the transitions leading to mixed micelles. Turbidity measurements provided information about the aggregation of lipid and detergent. Several reversible discrete transitions between states of the PC-octyl glucoside system were observed by both methods during dissolution and vesicle formation. These states could be described as a series of equilibrium structures that took the forms of vesicles, open lamellar sheets, and mixed micelles. As detergent was added to an aqueous suspension of vesicles, the octyl glucoside partitioned into the vesicles with a partition coefficient of 63. This was accompanied by leakage of small molecules and vesicle swelling until the mole fraction of detergent in the vesicles was just under 50% (detergent:lipid ratio of 1:1). Near this point, a transition was observed by an increase in turbidity and release of large molecules like inulin, consistent with the opening of vesicles. Both a turbidity maximum and a sharp increase in fluorescence were observed at a detergent to lipid mole ratio of 2.1:1. This was interpreted as the lower boundary of a region where both lamellar sheets and micelles are at equilibrium. At a detergent:lipid ratio of 3.0:1, another sharp change in resonance energy transfer and clarification of the suspension were observed, demarcating the upper boundary of this two-phase region. This latter transition is commonly referred to as solubilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To test the hypothesis that water pores in a lipid membrane mediate the proton transport, molecular dynamic simulations of a phospholipid membrane, in which the formation of a water pore is induced, are reported. The probability density of such a pore in the membrane was obtained from the free energy of formation of the pore, which was computed from the average force needed to constrain the pore in the membrane. It was found that the free energy of a single file of water molecules spanning the bilayer is 108(+/-10) kJ/mol. From unconstrained molecular dynamic simulations it was further deduced that the nature of the pore is very transient, with a mean lifetime of a few picoseconds. The orientations of water molecules within the pore were also studied, and the spontaneous translocation of a turning defect was observed. The combined data allowed a permeability coefficient for proton permeation across the membrane to be computed, assuming that a suitable orientation of the water molecules in the pore allows protons to permeate the membrane relatively fast by means of a wirelike conductance mechanism. The computed value fits the experimental data only if it is assumed that the entry of the proton into the pore is not rate limiting.  相似文献   

14.
Summary In this article, I review the current information concerning the partition of the fluorescent probes, cis-parinaric acid (9, 11, 13, 15-cis, trans, trans, cis-octadecatetraenoic acid) and trans-parinaric acid (9, 11, 13, 15-all trans-octadecatetraenoic acid) among aqueous, solid lipid, and fluid lipid phases. The association of these probes with lipid is described by a mole fraction partition coefficient whose value is typically in the range of 1–5 × 106, a reasonable value in light of partition coefficients for other fatty acids between hydrophobic phases and water. The partition coefficient, in the absence of lipid phase changes, is relatively independent of temperature and only slightly dependent on the total aqueous probe concentration.In lipid samples which contain coexisting fluid and solid phases, trans-parinaric acid preferentially partitions into the solid phase, while cis-parinaric acid distributes nearly equally between fluid and solid phases. This partition behavior probably arises from the molecular shape of the cis and trans parinaric acid isomers. From measurements of the polarization of fluorescence of cis and trans parinaric acid in mixed lipid systems or membranes it is possible to evaluate the proportion of lipid components involved in phase changes or phase separation. From fluorescence energy transfer between protein typtophan residues and the parinaric acid isomers it is possible to gain information about the organization of lipids and proteins in membranes and model systems. I close the review by considering some of the membrane research areas where these probes and their various lipid derivatives may be particularly useful.  相似文献   

15.
A widely used food additive erythrosine B, which has been implicated in minimal brain dysfunction in children was examined for its ability to increase membrane permeability to calcium ions. Planar phospholipid bilayer membranes become permeable to calcium, potassium and chloride ions and when erythrosine B is added to the aqueous phase at concentrations which were used by others to demonstrate effects on neuromuscular preparations. The observed increase in permeability to Ca2+ was of sufficient magnitude that equivalent effects on cells would seriously tax the systems which maintain low cytoplasmic Ca2+ levels. The permeability increase in the lipid bilayer membrane is time dependent and increases with erythrosine B concentration raised to a high power (4 to 7). This indicates that the permeability pathway is generated by the cooperative action of a number of erythrosine molecules. This permeability increases dramatically with increasing transmembrane voltage indicating that cells or organelles bearing potentials across their membranes should be particularly sensitive to the dye. We propose that the neurological effects of erythrosine stem from the increased Ca2+ permeability.  相似文献   

16.
N J Ryba  C E Dempsey  A Watts 《Biochemistry》1986,25(17):4818-4825
Rhodopsin, isolated from bovine retinal rod outer segment disk membranes, has been reconstituted into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine which was deuterated in the terminal methyl groups of the choline polar head group. By use of a mixed detergent system of cholate and octyl glucoside to solubilize the phospholipid and rhodopsin, 15 membrane complexes of predetermined phospholipid to rhodopsin mole ratios of between 350:1 and 65:1 have been produced by exhaustive dialysis and studied by a variety of techniques. Electron micrographs of replicas from freeze-fractured membrane complexes showed that the majority of the lipid, for all rhodopsin:phospholipid ratios, was contained in large bilayer vesicles with diameters in excess of 400 nm. Complexes produced with rhodopsin from frozen retina produced an absorption maximum at 478 nm after photobleaching whereas rhodopsin from fresh retina could be bleached more completely to an absorption maximum at 380 nm. Deuterium nuclear magnetic resonance (NMR) spectra from the lipid head groups of bilayers above the gel to liquid-crystalline phase transition temperature were shown to be sensitive in a systematic way to the presence of rhodopsin which could be bleached to 380 nm. The measured quadrupole splittings, taken as the separation of the turning points of the recorded NMR spectra, decreased from a value of 1.28 kHz for protein-free bilayers to approximately 0.40 kHz for bilayers containing 65 molecules of phospholipid for each rhodopsin at 32 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Little is known about the lipid environment of lens fiber junctions, the plasma membrane structure proposed to be responsible for passage of low molecular weight metabolites between adjacent lens fiber cells. Plasma membranes of the ocular lens are especially rich in fiber junctions. The resistance of junctional domains to disruption by detergent or alkali treatment provides the opportunity to isolate a lens plasma membrane fraction enriched in fiber junctions. When examined by electron microscopy, the fiber junction fraction prepared from bovine lenses was enriched with junctional structures by about twofold when compared to total plasma membrane. We compared the protein, phospholipid, and cholesterol concentration of total plasma membrane with fiber junctional membrane from rat and cow lens and from aged normal cataractous human lenses. The principal finding was that junctional membrane contained 20-40% more total lipid than that of the total plasma membrane. This was due to a proportionate increase in the relative content (mg/mg protein) of both phospholipid and cholesterol. Exclusive of one exception (nucleus of bovine lens), the cholesterol/phospholipid molar ratios of the two fractions were similar. In the bovine nucleus, the cholesterol/phospholipid molar ratio was substantially higher in the fiber junctional-enriched membrane fraction than in the total plasma membrane, suggesting a special association of cholesterol with bovine nuclear fiber junctions. The relative lipid compositions of the plasma membrane and fiber junction-enriched fractions from human normal and cataractous lenses were similar, suggesting that human senile cataractogenesis involves changes in the lens plasma membrane more subtle than would be reflected by gross changes in the membrane lipid composition.  相似文献   

18.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

19.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

20.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme with absolute specificity for phosphatidylcholine (PC). The enzyme devoid of lipid, the apodehydrogenase, inserts spontaneously into phospholipid vesicles where it exists as a tetramer. We now find the lipid activation to be limited by the mole fraction of PC in the total phospholipid. These studies suggest that the concentration of the enzyme-PC complex, which is essential for enzymic activity, becomes diffusion limited at lower PC concentration. The lipid activation and the tryptophan fluorescence of purified D-beta-hydroxybutyrate dehydrogenase were studied in the presence of a constant "bilayer background" of approximately 100 nonactivating phospholipid molecules/enzyme monomer. Activation by PC was half-maximal at 20 PC molecules/enzyme monomer. This value was doubled when the amount of "background" phospholipid was doubled. Activation proceeded with positive cooperativity having a Hill coefficient of approximately 2.4. These data indicate interactions between at least three PC-binding sites. The quenching of tryptophan fluorescence by the phospholipid activator, 1-palmitoyl-2-(1-pyrenyl)-decanoyl-PC (2-pyrenyl-PC), gives a saturation curve with half-maximal quenching of 6 quencher molecules/enzyme monomer. This value is equivalent to an apparent phospholipid-protein dissociation constant in the two-dimensional membrane and corresponds to approximately 6 mol % of total phospholipid. In distinct contrast to the phospholipid activation curve, the fluorescence quenching saturation curve was hyperbolic and there was no specificity for PC. The fluorescence quenching by 2-pyrenyl-PC could be diminished by using a several-fold excess of PC or other phospholipids so as to reduce the mole fraction of quencher in the bilayer. It would appear that formation of enzyme-PC complex is a dynamic process consisting of at least two discernible steps: 1) a primary interaction, as measured by tryptophan quenching, which is hyperbolic and not specific for lecithin. This interaction is independent from and precedes 2) phospholipid activation of D-beta-hydroxybutyrate dehydrogenase, which is cooperative in nature and specific for lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号