首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Decoville M  Giacomello E  Leng M  Locker D 《Genetics》2001,157(1):237-244
The Drosophila dsp1 gene, which encodes an HMG-like protein, was originally identified in a screen for corepressors of Dorsal. Here we report that loss of dsp1 function causes homeotic transformations resembling those associated with loss of function in the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Abdominal-B. The expression pattern of Scr is altered in dsp1 mutant imaginal discs, indicating that dsp1 is required for normal expression of this gene. Genetic interaction studies reveal that a null allele of dsp1 enhances trithorax-group gene (trx-G) mutations and partially suppresses Polycomb-group gene (Pc-G) mutations. On the contrary, overexpression of dsp1 induces an enhancement of the transformation of wings into halteres and of the extra sex comb phenotype of Pc. In addition, dsp1 male mutants exhibit a mild transformation of A4 into A5. Comparison of the chromatin structure at the Mcp locus in wild-type and dsp1 mutant embryos reveals that the 300-bp DNase I hypersensitive region is absent in a dsp1 mutant context. We propose that DSP1 protein is a chromatin remodeling factor, acting as a trx-G or a Pc-G protein depending on the considered function.  相似文献   

2.
Two main classes of proteins, Polycomb group (PcG) and Trithorax group (TrxG), play a key role in the regulation of homeotic genes. These proteins act in multimeric complexes to remodel chromatin. A third class of proteins named Enhancers of Trithorax and Polycomb (ETP) modulates the activity of TrxG and PcG, but their role remains largely unknown. We previously identified an HMGB‐like protein, DSP1 (Dorsal Switch Protein 1), which was classified as an ETP. Preliminary studies have revealed that DSP1 is involved in multimeric complexes. Here we identify a DEAD‐box RNA helicase, Rm62, as partner of DSP1 in a 250‐kDa complex. Coimmunoprecipitation assays performed on embryo extracts indicate that DSP1 and Rm62 are associated in 3‐ to 12‐h embryos. Furthermore, DSP1 and Rm62 colocalize on polytene chromosomes. Consistent with these results, a mutation in Rm62 enhances a null mutation of dsp1 and also mutations of trxG or PcG, suggesting that Rm62 has characteristics of an ETP. We show here for the first time that an RNA helicase is involved in the maintenance of homeotic genes. genesis 48:244–253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
A diapause-specific peptide (DSP) composed of 41 amino acid residues including 6 cysteines, has been isolated from diapausing adults of the leaf beetle Gastrophysa atrocyanea. In this study, DSP was found to be expressed primarily in diapausing adults and to a minor extent in pupae, but not in eggs, larvae, or post-diapausing adults. DSP was not induced by bacterial or fungal challenge. DSP-less adults were generated by the injection of double-stranded RNA (dsRNA) corresponding to the dsp gene into pre-diapausing adults. Gene silencing induced by dsRNA was found to be a useful tool for the analysis of DSP in diapausing adults. DSP-less adults showed similar burrowing behavior and oxygen consumption as control insects suggesting that DSP is not essential for the normal onset and maintenance of diapause.  相似文献   

6.
BACKGROUND INFORMATION: The Pc-G (Polycomb group) and trx-G (trithorax group) genes play a key role in the regulation of the homoeotic genes. The homoeotic gene Scr (Sex combs reduced) contained in the Antennapedia complex specifies segmental identity of the labial and prothoracic segments in Drosophila. Regulation of Scr requires the action of different enhancer elements spread over several kilobases. We previously identified an HMGB (high mobility group)-like protein DSP1 (dorsal switch protein 1), which works like a trx-G protein for the normal Scr expression. RESULTS: In the present study, we attempted to characterize the regulatory sequences involved in the maintenance of the Scr activation by DSP1. We report here, using a transgenic line for the Scr10.0XbaI-regulatory element, that lack of DSP1 affects the function of a reporter gene in legs' imaginal discs but not in embryos. We show by immunolocalization that DSP1 is recruited on polytene chromosomes to the insertion site of the transgene. Moreover, using chromatin immunoprecipitation experiments, we identify two regions of 1 kb in Scr10.0XbaI as the main DSP1 targets. CONCLUSION: These results provide strong evidence that the Scr gene expression is influenced by direct interaction between DSP1 and two Scr regulation elements. In addition, our results show that this interaction undergoes dynamic changes during development.  相似文献   

7.
8.
The dsp locus contains genes involved in the subunit synthesis and/or assembly of fibrils that radiate outward from the Myxococcus xanthus cell surface and attach to other cells. The csgA gene encodes an extracellular protein morphogen which is essential for fruiting body development. The question of whether fibrils are involved in the transmission of CsgA to adjacent cells was investigated in three ways. First, the dsp and csgA mutants were mixed in a ratio of 1:1 and allowed to develop; fruiting bodies containing spores derived from the csgA mutant were formed, suggesting efficient CsgA transfer. Second, the csgA mutation affected expression of many developmentally regulated genes differently from the way dsp affected their expression. Third, the expression of one developmentally regulated gene, which was partially expressed in csgA and dsp backgrounds, was almost completely inhibited in the presence of both mutations, suggesting that its promoter is regulated independently by two distinct stimuli, one that is csgA dependent and one that is dsp dependent. Together these results argue that fibrils are not necessary for cell-to-cell transmission or perception of CsgA, and their precise function remains unknown.  相似文献   

9.
《Insect Biochemistry》1991,21(6):631-640
In a previous study it has been reported that dsp28 is induced during desiccation in Tenebrio larvae. During that study it was observed that in non-stressed larvae the concentration of dsp28 in hemolymph drops dramatically just prior to pupation. These results suggested that control of dsp28 synthesis is subject to environmental as well as hormonal cues. This study identifies a site of synthesis as fat body, as dsp28 was secreted into the medium during in vitro incubation of larval fat bodies. Using immunoelectrophoresis to determine protein concentration a developmental profile showing changes in levels of dsp28 in hemolymph during larval, pupal and adult stages of Tenebrio molitor was established. The concentration of dsp28 in larval hemolymph dropped from 4 to 5 mg/ml to 1.5 mg/ml just prior to pupation. This lower level was maintained until adults emerged when the concentration of dsp28 rose to prepupal levels again. Hormonal regulation is suggested since application of methoprene to newly-emerged pupae resulted in an increased incorporation of radiolabeled cysteine into dsp28.  相似文献   

10.
Myxococcus xanthus dsp and dif mutants have similar phenotypes in that they are deficient in social motility and fruiting body development. We compared the two loci by genetic mapping, complementation with a cosmid clone, DNA sequencing, and gene disruption and found that 16 of the 18 dsp alleles map to the dif genes. Another dsp allele contains a mutation in the sglK gene. About 36.6 kb around the dsp-dif locus was sequenced and annotated, and 50% of the genes are novel.  相似文献   

11.

Background  

Polycomb-group genes (PcG) encode proteins that maintain homeotic (Hox) gene repression throughout development. Conversely, trithorax-group (trxG) genes encode positive factors required for maintenance of long term Hox gene activation. Both kinds of factors bind chromatin regions called maintenance elements (ME). Our previous work has shown that corto, which codes for a chromodomain protein, and dsp1, which codes for an HMGB protein, belong to a class of genes called the Enhancers of trithorax and Polycomb (ETP) that interact with both PcG and trxG. Moreover, dsp1 interacts with the Hox gene Scr, the DSP1 protein is present on a Scr ME in S2 cells but not in embryos. To understand better the role of ETP, we addressed genetic and molecular interactions between corto and dsp1.  相似文献   

12.
Bicoid (Bcd) is a Drosophila melanogaster morphogenetic gradient that controls embryonic patterning by activating target gene expression in a concentration-dependent manner. In this study we describe experiments to determine how different enhancers respond to Bcd distinctively, focusing on two natural Bcd-responsive enhancer elements, hunchback (hb) and knirps (kni). Our results show that, on the hb enhancer element, the amino-terminal domain of Bcd (residues 1 to 91) plays primarily an inhibitory role, whereas on the kni enhancer element this same Bcd domain plays a positive role at low protein concentrations. We further demonstrate that while the amino-terminal domain is largely dispensable for cooperative binding to the hb enhancer element, it is preferentially required for cooperative binding to the kni enhancer element. Alteration of the arrangement of Bcd binding sites in the kni enhancer element reduces the role of the amino-terminal domain in cooperative DNA binding but increases the effectiveness of the self-inhibitory function. In addition, elimination of symmetric pairs of Bcd binding sites in the kni enhancer element reduces both DNA binding and activation by Bcd. We propose that the amino-terminal domain of Bcd is an enhancer-specific switch that contributes to the protein's ability to activate different target genes in distinct manners.  相似文献   

13.
Dynamin‐superfamily proteins (DSPs) are large self‐assembling mechanochemical GTPases that harness GTP hydrolysis to drive membrane remodeling events needed for many cellular processes. Mutation to alanine of a fully conserved lysine within the P‐loop of the DSP GTPase domain results in abrogation of GTPase activity. This mutant has been widely used in the context of several DSPs as a dominant‐negative to impair DSP‐dependent processes. However, the precise deficit of the P‐loop K to A mutation remains an open question. Here, we use biophysical, biochemical and structural approaches to characterize this mutant in the context of the endosomal DSP Vps1. We show that the Vps1 P‐loop K to A mutant binds nucleotide with an affinity similar to wild type but exhibits defects in the organization of the GTPase active site that explain the lack of hydrolysis. In cells, Vps1 and Dnm1 bearing the P‐loop K to A mutation are defective in disassembly. These mutants become trapped in assemblies at the typical site of action of the DSP. This work provides mechanistic insight into the widely‐used DSP P‐loop K to A mutation and the basis of its dominant‐negative effects in the cell.  相似文献   

14.
Mutants of Myxococcus xanthus dsp defective in fibril binding.   总被引:3,自引:1,他引:2       下载免费PDF全文
The dsp mutant of Myxococcus xanthus lacks extracellular fibrils and as a result is unable to undergo cohesion, group motility, or development (J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5765-5770, 1983; J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5771-5777, 1983; R. M. Behmlander and M. Dworkin, J. Bacteriol. 173:7810-7821, 1991; L. J. Shimkets, J. Bacteriol. 166:837-841, 1986; L. J. Shimkets, J. Bacteriol. 166:842-848, 1986). However, cohesion and development can be phenotypically restored by the addition of isolated fibrils (R. M. Behmlander, Ph.D. thesis, University of Minnesota, Minneapolis, 1994; B.-Y. Chang and M. Dworkin, J. Bacteriol. 176:7190-7196, 1994). As part of our attempts to examine the interaction of fibrils and cells of M. xanthus, we have isolated a series of secondary mutants of M. xanthus dsp in which cohesion, unlike that of the parent strain, could not be rescued by the addition of isolated fibrils. Cells of M. xanthus dsp were mutagenized either by ethyl methanesulfonate or by Tn5 insertions. Mutagenized cultures were enriched by selection of those cells that could not be rescued, i.e., that failed to cohere in the presence of isolated fibrils. Seven mutants of M. xanthus dsp, designated fbd mutants, were isolated from 6,983 colonies; these represent putative fibril receptor-minus mutants. The fbd mutants, like the parent dsp mutant, still lacked fibrils, but displayed a number of unexpected properties. They regained group motility and the ability to aggregate but not the ability to form mature fruiting bodies. In addition, they partially regained the ability to form myxospores. The fbd mutant was backcrossed into the dsp mutant by Mx4 transduction. Three independently isolated transconjugants showed essentially the same properties as the fbd mutants--loss of fibril rescue of cohesion, partial restoration of myxospore morphogenesis, and restoration of group motility. These results suggest that the physical presence of fibrils is not necessary for group motility, myxospore formation, or the early aggregative stage of development. We propose, however, that the perception of fibril binding is required for normal social behavior and development. The dsp fbd mutants (from here on referred to as fbd mutants) open the possibility of isolating and characterizing a putative fibril receptor gene.  相似文献   

15.
Sun L  Yu MC  Kong L  Zhuang ZH  Hu JH  Ge BX 《Cellular signalling》2008,20(7):1329-1337
MAP (Mitogen-activated protein) kinases play an important role in regulating many critical cellular processes. The inactivation of MAP kinases is always accomplished by a family of dual-specificity phosphatases, termed MAPK phosphatases (MKPs). Here, we have identified a novel MKP-like protein, designated DMKP-4, from the Drosophila genome. DMKP-4 is a protein of 387 amino acids, with a dual-specificity phosphatase (DSP) catalytic domain. Recombinant protein DMKP-4 retains intrinsic phosphatase activity against chromogenic substrate pNPP. Overexpression of DMKP-4 inhibited the activation of ERK, JNK and p38 by H(2)O(2), sorbitol and heat shock in HEK293-T cells, and JNK activation in Drosophila S2 cells under PGN stimuli. "Knockdown" of DMKP-4 expression by RNAi significantly enhanced the PGN-stimulated activation of JNK, but not ERK nor p38. Further study revealed that DMKP-4 interacted specifically with JNK via its DSP domain. Mutation of Cys-126 to serine in the DSP domain of DMKP-4 not only eliminated its interaction with JNK, but also markedly reduced its phosphatase activity. Thus, DMKP-4 is a Drosophila homologue of mammalian MKPs, and may play important roles in the regulation of various developmental processes.  相似文献   

16.
17.
Domene C  Illingworth CJ 《Proteins》2012,80(3):733-746
The von Hippel-Lindau tumor suppressor protein (pVHL) has an essential role in the regulation of the hypoxia response pathway in animal cells. Under normoxic conditions, the hypoxia-inducible factor (HIF) undergoes trans-4-prolyl hydroxylation and is subsequently recognised by the β-domain of pVHL, leading to the ubiquitination and degradation of HIF. Mutations of pVHL alter the binding of HIF. A subset of relevant clinically observed mutations to pVHL are thought to cause weaker binding of HIF-1α and are associated with cancer and cardiovascular diseases. Here, we present computational studies analyzing the interaction of HIF with mutant forms of pVHL, describing at atomic detail the local structural reorganization caused by substitution of certain residues of pVHL. The results reveal that the canonical configuration in the wild-type system is vital for the efficient functioning of the complex and that mutation of any of the residues implicated in the h-bond network in the binding site disrupts HIF binding. Although the experimentally observed ordering of binding energies for mutants of Tyr98 is reproduced, our examination of a broader range of mutations does not support the hypothesis of a correlation between the degree of disruption of the pVHL/HIF-1α interaction caused by a mutation and the phenotype with which the mutation is associated. We suggest that disruption of the binding interaction is one of many factors behind the manifestation of VHL disease.  相似文献   

18.
Orc5p is one of six subunits constituting the ORC (origin recognition complex), a possible initiator of chromosomal DNA replication in eukaryotes. Orc5p contains a Walker A motif. We recently reported that a strain of Saccharomyces cerevisiae having a mutation in Orc5p's Walker A motif (orc5-A), showed cell-cycle arrest at G2/M and degradation of ORC at high temperatures (37 degrees C). Over-production of Orc4p, another subunit of ORC, specifically suppressed these phenotypes [Takahashi, Yamaguchi, Yamairi, Makise, Takenaka, Tsuchiya and Mizushima (2004) J. Biol. Chem. 279, 8469-8477]. In the present study, we examined the mechanisms of ORC degradation and of its suppression by Orc4p over-production. In orc5-A, at high temperatures, ORC is degraded by proteasomes; either addition of a proteasome inhibitor, or introduction of a mutation of either tan1-1 or nob1-4 that inhibits proteasomes, prevented ORC degradation. Introduction of the tan1-1 mutation restored cell cycle progression, suggesting that the defect was due to ORC degradation by proteasomes. Yeast two-hybrid and co-immunoprecipitation analyses suggested that Orc5p interacts preferentially with Orc4p and that the orc5-A mutation diminishes this interaction. We suggest that this interaction is mediated by the C-terminal region of Orc4p, and the N-terminal region of Orc5p. Based on these observations, we consider that ATP binding to Orc5p is required for efficient interaction with Orc4p and that, in orc5-A, loss of this interaction at higher temperatures allows proteasomes to degrade ORC, causing growth defects. This model could also explain why over-production of Orc4p suppresses the orc5-A strain's phenotype.  相似文献   

19.
Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.  相似文献   

20.
Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb) and knirps (kni). Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd) and of kni by the posterior morphogen Caudal (Cad), as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the bistability induced by mutual repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号