首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的建立仙台病毒(SV)RT-PCR检测方法,并对灰仓鼠仙台病毒感染情况进行调查。方法根据NCBI发表的SV(gi:9627219)基因组序列设计引物,建立RT-PCR方法,对方法的特异性和灵敏性进行验证,并用该方法检测60份灰仓鼠的肺脏样本。结果建立的SV RT-PCR方法显示有较好的敏感性和特异性:以仙台病毒为模板扩增产生197 bp的单一目的条带,经测序比对与NCBI数据库中SV相关序列的一致率为98%,而以猴副流感病毒(SV5)、犬瘟热病毒、小鼠肺炎病毒、呼肠孤病毒III型及腮腺炎病毒为对照无任何条带产生;能检出的SVcDNA最低浓度是96.8 ng/mL;用该方法检测60份灰仓鼠,SV的感染率为3.33%(2/60)。结论建立的SV RT-PCR方法可用于实验类啮齿动物动物SV的常规检测,自然条件下灰仓鼠感染SV的问题不容忽视。  相似文献   

3.
Intraperitoneally (i.p.) injected interferon prolonged the survival time of mice inoculated intranasally (i.n.) with Sendai virus and reduced the mortality in mice inoculated i.n. with Haemophilus influenzae. Moderate concentrations of interferon were demonstrated in homogenized lungs of Sendai virus infected mice as long as the virus was present. Similar concentrations could be produced by i.p. injection of Sendai virus or interferon. Alveolar macrophages from mice treated i.p. with interferon or Sendai virus phagocytized more actively than control macropages. From the present and earlier data it is concluded that interferon may have a direct effect on the Sendai virus infection. The total effect of virus pneumonia is a reduction of the lung macrophage antimicrobial activity, and therefore the phagocytosis-modifying effect of interferon produced in the lungs is probably of minor importance for the outcome of the disease.  相似文献   

4.
The mode of hemolysis by influenza A virus was compared with that of Sendai virus. The WSN strain of influenza virus grown in either eggs or MDCK cells expressed hardly any hemolytic activity by itself. Treatment of the MDCK cell-grown WSN virus with sonication or freezing and thawing moderately enhanced the hemolytic activity, but the maximum level attainable was considerably lower than that of Sendai virus. A high level of hemolytic activity comparable to that of Sendai virus was obtained only after treatment of the virus with antibody and complement. An electron microscopic study revealed that non- or low-hemolytic WSN virions were not permeable to uranyl acetate stain in contrast with the hemolytic virions obtained after treatment with antibody and complement, indicating that the hemolytic virions had sustained some injury to their envelopes. These phenomena were comparable to those found with Sendai virus, showing that damage to the envelope is also responsible for the hemolysis of influenza virus. The influenza viruses, however, remained spherical after every treatment and the stain did not penetrate into the core of the virion. These observations suggest that the envelope of influenza virus is more rigid than that of Sendai virus but that the hemolytic process of influenza virus is nevertheless mediated through envelope-membrane fusion as in the case of Sendai virus.  相似文献   

5.
Pre-infection with mouse hepatitis virus (MHV) strains S, 3, or JHM reduced the ability of mice to seroconvert to PVM. Geometric mean antibody titers to PVM among MHV pre-infected mice were lower than those for control mice given only PVM, and dually infected mice seroconverted to PVM later than mice given PVM alone. PVM was not recovered from normally permissive respiratory tract tissues of MHV-S pre-infected mice. Pre-infection of DBA/2 mice with MHV-S compromised the susceptibility of these mice to lethal Sendai virus infection but did not substantially reduce the titers of infectious Sendai virus recovered from the lungs. Serologic responses to Sendai virus and lung Sendai virus titers were similar in Sendai virus-resistant C57BL/6 mice pre-infected or not with MHV-S.  相似文献   

6.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

7.
The action of neuraminidase of influenza A virus, Sendai virus and Newcastle disease virus particles on bovine brain ganglioside GM1 and the properties of Sendai virus neuraminidase for GM1 were studied. With Sendai virus, GM1 was hydrolyzed to asialo-GM1 (GA1) and N-acetylneuraminic acid even in the absence of surfactant or other additives, while the hydrolysis of GM1 by Newcastle disease virus or influenza A virus was very low or undetectable under the same conditions. The formation of GA1 by Sendai virus neuraminidase was confirmed by thin-layer chromatography and immunodiffusion test using anti-GA1 antiserum. The apparent Km of Sendai virus neuraminidase for GM1 hydrolysis was found to be 2.67 x 10(-4) M and the optimum pH was 5.6. GM3, GM2 and oligosaccharide of GM1 were hydrolyzed more effectively than GM1 in the absence of surfactant (GM3 greater than GM2 greater than oligosaccharide of GM1 greater than GM1). The hydrolysis of GM1 by the Sendai virus enzyme was stimulated by the addition of sodium cholate or sodium taurocholate, but was inhibited by divalent cations (10 mM), Ca2+, Mg2+, ZN2+, Fe2+ and CU2+. In the absence of the surfactant, Sendai virus neuraminidase hydrolyzed GM1 more efficiently than Arthobacter ureafaciens neuraminidase which has been reported recently as being an adequate enzyme to hydrolyze ganglioside GM1 as a substrate.  相似文献   

8.
A G Gitman  I Kahane  A Loyter 《Biochemistry》1985,24(11):2762-2768
Anti-human erythrocyte antibodies or insulin molecules were covalently coupled to the glycoproteins (the hemagglutinin/neuraminidase and the fusion polypeptides) of Sendai virus envelopes with N-succinimidyl 3-(2-pyridyldithio)propionate and succinimidyl 4-(p-maleimidophenyl)butyrate as cross-linking reagents. Reconstituted Sendai virus envelopes, bearing covalently attached anti-human erythrocyte antibodies or insulin molecules, were able to bind to but not fuse with virus receptor depleted human erythrocytes (neuraminidase-treated human erythrocytes). Only coreconstitution of Sendai virus glycoproteins, bearing attached anti-human erythrocyte antibodies or insulin molecules with intact, untreated viral glycoproteins, led to the formation of fusogenic, targeted reconstituted Sendai virus envelopes. Binding and fusion of reconstituted Sendai virus envelopes, bearing anti-human erythrocyte antibodies or insulin molecules, with neuraminidase-treated human erythrocytes were blocked by the monovalent fraction, obtained after papain digestion of immunoglobulins, made of anti-human erythrocyte antibodies or free insulin molecules, respectively. The results of this work demonstrate an active role of the viral binding protein (hemagglutinin/neuraminidase polypeptide) in the virus membrane fusion process and show a novel and efficient method for the construction of targeted, fusogenic Sendai virus envelopes.  相似文献   

9.
The mechanism of the transient inhibition of polyoma virus synthesis by betapropiolactone-inactivated Sendai virus was studied. Polyoma virus early functions did not appear to be affected, although deoxyribonucleic acid (DNA) and structural protein synthesis were inhibited 60 and 35% respectively. The inhibition of macromolecular synthesis was not sufficient to account for the 90% inhibition of infectious progeny formation. Encapsidation of polyoma DNA into mature virions appears to be completely inhibited after superinfection by beta-propiolactone-inactivated Sendai virus. Ultraviolet irradiation of live or beta-propiolactone-inactivated Sendai virus preparations abolishes the interfering capacity, indicating that a functional Sendai virus ribonucleic acid molecule is the interfering component.  相似文献   

10.
The effect of pneumonia induced by Mycoplasma pulmonis in mice on the resistance of the lung to additional bacterial infection was examined. The effect of pneumonia induced by Sendai virus on the resistance of mice to M. pulmonis was also investigated and compared with the effect of Sendai virus on resistance to Staphylococcus aureus. Sendai virus infection decreased subsequent resistance to M. pulmonis in proportion to the virus dose. Decreased resistance to subsequent S. aureus and M. pulmonis infection was greatest at about the same time after inoculation of virus and was related to virus-induced lesions. Besides affecting the resistance of mice to subsequent mycoplasma infection, Sendai virus could enhance an existing mycoplasma infection. Pneumonia induced by M. pulmonis did not decrease resistance to subsequent bacterial infection. The mechanism whereby Sendai virus decreases host resistance is therefore similar for bacteria and mycoplasmas, but pneumonia induced by mycoplasmas does not have the same effect.  相似文献   

11.
Sendai virus grown in fertile eggs (egg Sendai) infects L cells in which the synthesis of L Sendai (grown in L cells) occurs by the one-step mechanism. L Sendai is not infectious for L cells when tested by the tube titration method although it is infectious for chick embryos. When L cells infected with egg Sendai were dispersed by trypsin and plated on a monolayer culture of L cells, the viral agents spread to the adjacent recipient cells in which the synthesis of L Sendai occurred. The newly infected L cells became infectious for L cells again by trypsin treatment. Kinetic experiments suggested that the target of trypsin is the mature virus, of L Sendai nature, just budding from the L-cell surface. By using an immunofluorescent cell-counting technique, recovery of the infectivity of L Sendai for L cells due to a direct enzymatic action of trypsin was demonstrated. Under the optimal condition, the infectivity increased 1,000-fold for L cells and 10-fold for chick embryos, and both the titers could favorably be compared. No increasing effect of trypsin was observed on the infectivity of egg Sendai. Density centrifugation studies revealed a difference between egg Sendai and L Sendai in the density. Trypsin treatment which induced the maximal enhancement of L Sendai infectivity did not affect both the densities, showing that variations of Sendai virus in the infectivity for L cells and in the density are independent types of host-controlled modification.  相似文献   

12.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

13.
Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.  相似文献   

14.
Sendai virus infection transmitted by contact from cagemates was followed by virus titration and immunofluorescence. The virus grew in the respiratory tract and caused macroscopic lesions in all contact mice. The virus grew to a higher titer in the lung than in the trachea. Tracheal smears, however, were found to be the most suitable for the diagnosis of Sendai virus infection by immunofluorescence, since they contained a large number of cells with intense fluorescence. Diagnosis of Sendai virus infection was made by immunofluorescence within a few hours after autopsy made at early stages of infection.  相似文献   

15.
Summary A color test for the detection and titration of neutralizing antibodies against Sendai virus is described. Non-specific inhibitors should be removed by treatment with cholera filtrate R.D.E. In contrast to both the haemagglutination inhibition test and the complement fixation test, which do not allow a differentiation between mumps and Sendai virus infection because of cross reactions, the color test is assumed to be sufficiently specific for Sendai virus infection.  相似文献   

16.
Incubation of intact Sendai virions or reconstituted Sendai virus envelopes with phosphatidylcholine/cholesterol liposomes at 37 degrees C results in virus-liposome fusion. Neither the liposome nor the virus content was released from the fusion product, indicating a nonleaky fusion process. Only liposomes possessing virus receptors, namely sialoglycolipids or sialoglycoproteins, became leaky upon interaction with Sendai virions. Fusion between the virus envelopes and phosphatidylcholine/cholesterol liposomes was absolutely dependent upon the presence of intact and active hemagglutinin/neuraminidase and fusion viral envelope glycoproteins. Fusion between Sendai virus envelopes and phosphatidylcholine/cholesterol liposomes lacking virus receptors was evident from the following results. Anti-Sendai virus antibody precipitated radiolabeled liposomes only after they had been incubated with fusogenic Sendai virions. Incubation of N-4-nitrobenzo-2-oxa-1,3-diazole-labeled fusogenic reconstituted Sendai virus particles with phosphatidylcholine/cholesterol liposomes resulted in fluorescence dequenching. Incubation of Tb3+-containing virus envelopes with phosphatidylcholine/cholesterol liposomes loaded with sodium dipicolinate resulted in the formation of the chelation complex Tb3+-dipicolinic acid, as was evident from fluorescence studies. Virus envelopes fuse efficiently also with neuraminidase/Pronase-treated erythrocyte membranes, i.e. virus receptor-depleted erythrocyte membranes, although fusion occurred only under hypotonic conditions.  相似文献   

17.
Phenotypic mixing between Sendai virus and vesicular stomatitis virus (VSV) or the mutant VSV ts045 was studied. Conditions were optimized for double infection, as shown by immunofluorescence microscopy. Virions from double-infected cells were separated by sequential velocity and isopycnic gradient centrifugations. Two types of particles with mixed protein compositions were found. One type was VSV particles with Sendai virus spikes, i.e., phenotypically mixed particles. A second type was Sendai virus-VSV associations, which in plaque assays also behaved as phenotypically mixed particles. The ratio of VSV G protein to Sendai virus glycoproteins on the cell surface was varied, using the VSV mutant ts045 in double infections. Thus, different amounts of the VSV G protein were allowed to reach the cell surface at 32, 38, and 39 degrees C in Sendai virus-infected cells. However, a fixed number of Sendai virus spikes was always found in the ts045 virions. This represented 12 to 16% of the number of G proteins present in normal VSV. Furthermore, the yield of ts045 virions was radically reduced during double infection when the temperature was raised to block G-protein transport to the cell surface, suggesting that the Sendai virus glycoproteins were not able to compensate for G protein in budding. These results emphasize the role of the G protein in VSV assembly.  相似文献   

18.
C57BL/6 (B6, H-2b) mice are CTL responders to both Sendai virus and Moloney leukemia virus. In the former response the H-2Kb class I MHC molecule is used as CTL restriction element, in the latter response the H-2Db molecule. B6 dendritic cells (DC) are superior in the presentation of Sendai virus Ag to CTL in comparison with B6 normal spleen cells. Con A blasts have even less capacity to present viral Ag than NSC, and LPS blasts show an intermediate capacity to present viral Ag. H-2Kb mutant bm1 mice do not generate a CTL response to Sendai virus, but respond to Moloney leukemia virus, as demonstrated by undetectable CTL precursors to Sendai virus and a normal CTL precursor frequency to Moloney virus. Compared to B6 mice, other H-2Kb mutant mice show decreased Sendai virus-specific CTL precursor frequencies in a hierarchy reflecting the response in bulk culture. The Sendai virus-specific CTL response defect of bm1 mice was not restored by highly potent Sendai virus-infected DC as APC for in vivo priming and/or in vitro restimulation. In mirror image to H-2Kb mutant bm1 mice, H-2Db mutant bm14 mice do not generate a CTL response to Moloney virus, but respond normally to Sendai virus. This specific CTL response defect was restored by syngeneic Moloney virus-infected DC for in vitro restimulation. This response was Kb restricted indicating that the Dbm14 molecule remained largely defective and that a dormant Kb repertoire was aroused after optimal Ag presentation by DC. In conclusion, DC very effectively present viral Ag to CTL. However, their capacity to restore MHC class I determined specific CTL response defects probably requires at least some ability of a particular MHC class I/virus combination to associate and thus form an immunogenic complex.  相似文献   

19.
20.
1. Sendai virus causes permeability changes when added to freshly isolated brain cells (cerebellum or ependymal cells) or to a culture of forebrain cells. 2. Sendai virus causes permeability changes when added to organ cultures of ferret lung or nasal turbinate. Influenza virus causes no permeability changes under these conditions. 3. Rabies virus and vesicular-stomatitis virus, in contrast with Sendai virus, do not cause permeability changes in BHK cells or Lettrée cells. 4. Serum from patients suffering from viral hepatitis does not cause permeability changes in human leucocytes; addition to Sendai virus causes permeability changes. 5. It is concluded that permeability changes accompanying viral entry occur only with certain types of paramyxovirus, but that there is little restriction on cell type. 6. MDBK cells infected with Sendai virus show permeability changes during viral release, similar to those that occur during viral entry. Because these changes do not appear to be restricted to paramyxoviruses, they may have considerable clinical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号