首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosystem II (PSII) complex is located in the thylakoid membrane of higher plants, algae and cyanobacteria and drives the water oxidation process of photosynthesis, which splits water into reducing equivalents and molecular oxygen by solar energy. Electron and X-ray crystallography analyses have revealed that the PSII core complex contains between 34 and 36 transmembrane alpha-helices, depending on the organism. Of these helices at least 12-14 are attributed to low molecular mass proteins. However, to date, at least 18 low molecular mass (<10 kDa) subunits are putatively associated with the PSII complex. Most of them contain a single transmembrane span and their protein sequences are conserved among photosynthetic organisms. In addition, these proteins do not have any similarity to any known functional proteins in any type of organism, and only two of them bind a cofactor. These findings raise intriguing questions about why there are so many small protein subunits with single-transmembrane spans in the PSII complex, and their possible functions. This article reviews our current knowledge of this group of proteins. Deletion mutations of the low molecular mass subunits from both prokaryotic and eukaryotic model systems are compared in an attempt to understand the function of these proteins. From these comparisons it seems that the majority of them are involved in stabilization, assembly or dimerization of the PSII complex. The small proteins may facilitate fast dynamic conformational changes that the PSII complex needs to perform an optimal photosynthetic activity.  相似文献   

2.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   

3.
The psbEFLJ operon of tobacco plastids encodes four bitopic low molecular mass transmembrane components of photosystem II. Here, we report the effect of inactivation of psbL on the directional forward electron flow of photosystem II as compared to that of the wild type and the psbJ deletion mutant, which is impaired in PSII electron flow to plastoquinone [Regel et al. (2001) J. Biol. Chem. 276, 41473-41478]. Exposure of Delta psbL plants to a saturating light pulse gives rise to the maximal fluorescence emission, Fm(L), which is followed within 4-6 s by a broader hitherto not observed second fluorescence peak in darkness, Fm(D). Conditions either facilitating oxidation or avoiding reduction of the plastoquinone pool do not affect the Fm(L) level of Delta psbL plants but prevent the appearance of Fm(D). The level of Fm(D) is proportional to the intensity and duration of the light pulse allowing reduction of the plastoquinone pool in dark-adapted leaves prior to the activation of PSI and oxidation of plastoquinol. Lowering the temperature decreases the Fm(D) level in the Delta psbL mutant, whereas it increases considerably the lifetime of Q(A)*- in the Delta psbJ mutant. The thermoluminescence signal generated by Q(A)*-/S(2) charge recombination is not affected; on the other hand, charge recombination of Q(B)*-/S(2,3) could not be detected in Delta psbL plants. PSII is highly sensitive to photoinhibition in Delta psbL. We conclude that PsbL prevents reduction of PSII by back electron flow from plastoquinol protecting PSII from photoinactivation, whereas PsbJ regulates forward electron flow from Q(A)*- to the plastoquinone pool. Therefore, both proteins contribute substantially to ensure unidirectional forward electron flow from PSII to the plastoquinone pool.  相似文献   

4.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

5.
6.
Photosystem II is a multimeric protein complex of the thylakoid membrane in chloroplasts. Approximately half of the at least 26 different integral membrane protein subunits have molecular masses lower than 10 kDa. After one-dimensional (1D) or two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) separation, followed by enzymatic digestion of detected proteins, hardly any of these low-molecular-weight (LMW) subunits are detectable. Therefore, we developed a method for the analysis of highly hydrophobic LMW proteins. Intact proteins are extracted from acrylamide gels using a mixture of formic acid and organic solvent, precipitated with acetone, and analyzed by “top-down” mass spectrometry (MS). After offline nanoESI (electrospray ionization) MS, all LMW one-helix proteins from photosystem II were detected. In the four detected photosystem II supercomplexes of Nicotiana tabacum wild-type plants, 11 different one-helix proteins were identified as PsbE, -F, -H, -I, -K, -L, -M, -Tc, -W, and two isoforms of PsbX. The proteins PsbJ, -Y1, and -Y2 were localized in the buffer front after blue native (BN) PAGE, indicating their release during solubilization. Assembled PsbW is detected exclusively in supercomplexes, whereas it is absent in photosystem II core complexes, corroborating the protein’s function for assembly of the light-harvesting complexes. This approach will substantiate gel-blot immunoanalysis for localization and identification of LMW protein subunits in any membrane protein complex.  相似文献   

7.
The polypeptide composition and membrane structure of a variegated mutant of tobacco have been investigated. The pale green mutant leaf regions contain chloroplasts in which the amount of membrane stacking has been reduced (although not totally eliminated). The mutant membranes are almost totally deficient in Photosystem II when compared to wild-type chloroplast membranes, but still show near-normal levels of Photosystem I activity. The pattern of membrane polypeptides separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows several differences between mutant and wild-type membranes, although the major chlorophyll-protein complexes described in many other plant species are present in both mutant and wild-type samples. Freeze-fracture analysis of the internal structure of these photosynthetic membranes shows that the Photosystem II-deficient membranes lack the characteristic large particle associated with the E fracture face of the thylakoid. These membranes also lack a tetramer-like particle visible on the inner (ES) surface of the membrane. The other characteristics of the photosynthetic membrane, including the small particles observed on the P fracture faces in both stacked and unstacked regions, and the characteristic changes in the background matrix of the E fracture face which accompany thylakoid stacking, are unaltered in the mutant. From these and other observations we conclude that the large (EF and ES) particle represents an amalgam of many components comprising the Photosystem II reaction complex, that the absence of one or more of its components may prevent the structure from assembling, and that in its absence, Photosystem II activity cannot be observed.  相似文献   

8.
The PsbL protein is one of three low-molecular-weight subunits identified at the monomer-monomer interface of photosystem II (PSII) [Ferreira et al. (2004) Science 303:1831-1838; Loll et al. (2005) Nature 438:1040-1044]. We have employed site-directed mutagenesis to investigate the role of PsbL in Synechocystis sp. PCC 6803 cells. Truncation of the C-terminus by deleting the last four residues (Tyr-Phe-Phe-Asn) prevented association of PsbL with the CP43-less monomeric sub-complex and therefore blocked PSII assembly resulting in an obligate photoheterotrophic strain. Replacement of these residues with Ala created four photoautotrophic mutants. Compared to wild type, the F37A, F38A, and N39A strains had reduced levels of assembled PSII centers and F37A and F38A cells were readily photodamaged. In contrast, Y36A and Y36F mutants were similar to wild type. However, each of these strains had elevated levels of the CP43-less inactive monomeric complex. Mutations targeting a putative hydrogen bond between Arg-16 and sulfoquinovosyldiacylglycerol resulted in mutants that were also highly susceptible to photodamage. Similarly mutations targeting a conserved Tyr residue (Tyr-20) also destabilized PSII under high light and suggest that Tyr-20-lipid interactions or interactions of Tyr-20 with PsbT influence the ability of PSII to recover from photodamage.  相似文献   

9.
The recently determined crystal structures of photosystems I and II at 2.5 A and 3.8 A resolution, respectively, have improved the structural basis for understanding the processes of light trapping, exciton transfer and electron transfer occurring in the primary steps of oxygenic photosynthesis. Understanding the assembly of the 12 protein subunits and 128 cofactors in photosystem I allows us to study the possible functions of the individual players in this protein-cofactor complex.  相似文献   

10.
Photosystem II of higher plants and cyanobacteria is composed of more than 20 polypeptide subunits. The pronounced hydrophobicity of these proteins hinders their purification and subsequent analysis by mass spectrometry. This paper reports the results obtained by application of matrix-assisted laser desorption/ionization mass spectrometry directly to isolated complexes and thylakoid membranes prepared from cyanobacteria and spinach. Changes in protein contents following physiopathological stimuli are also described. Good correlations between expected and measured molecular masses allowed the identification of the main, as well as most of the minor, low molecular weight components of photosystem II. These results open up new perspectives for clarifying the functional role of the various polypeptide components of photosystems and other supramolecular integral membrane complexes.  相似文献   

11.
Arabidopsis thaliana plants have been transformed with an antisense gene to the psbW of photosystem II (PSII). Eight transgenic lines containing low levels of psbW mRNA have been obtained. Transgenic seedlings with low contents of PsbW protein (more than 96% reduced) were selected by Western blotting and used for photosynthetic functional studies. There were no distinct differences in phenotype between the antisense and wild type plants during vegetative period under normal growth light intensities. However, a sucrose gradient separation of briefly solubilized thylakoid membranes revealed that no dimeric PSII supracomplex could be detected in the transgenic plants lacking the PsbW protein. Furthermore, analysis of isolated thylakoids demonstrated that the oxygen-evolving rate in antisense plants decreased by 50% compared with the wild type. This was found to be due to up to 40% of D1 and D2 reaction center proteins of PSII disappearing in the transgenic plants. The absence of the PsbW protein also altered the contents of other PSII proteins to differing extents. These results show that in the absence of the PsbW protein, the stability of the dimeric PSII is diminished and consequently the total number of PSII complexes is greatly reduced. Thus the nuclear encoded PsbW protein may play a crucial role in the biogenesis and regulation of the photosynthetic apparatus.  相似文献   

12.
Co-translational assembly of the D1 protein into photosystem II.   总被引:9,自引:0,他引:9  
Assembly of multi-subunit membrane protein complexes is poorly understood. In this study, we present direct evidence that the D1 protein, a multiple membrane spanning protein, assembles co-translationally into the large membrane-bound complex, photosystem II. During pulse-chase studies in intact chloroplasts, incorporation of the D1 protein occurred without transient accumulation of free labeled protein in the thylakoid membrane, and photosystem II subcomplexes contained nascent D1 intermediates of 17, 22, and 25 kDa. These N-terminal D1 intermediates could be co-immunoprecipitated with antiserum directed against the D2 protein, suggesting co-translational assembly of the D1 protein into PS II complexes. Further evidence for a co-translational assembly of the D1 protein into photosystem II was obtained by analyzing ribosome nascent chain complexes liberated from the thylakoid membrane after a short pulse labeling. Radiolabeled D1 intermediates could be immunoprecipitated under nondenaturing conditions with antisera raised against the D1 and D2 protein as well as CP47. However, when the ribosome pellets were solubilized with SDS, the interaction of these intermediates with CP47 was completely lost, but strong interaction of a 25-kDa D1 intermediate with the D2 protein still remained. Taken together, our results indicate that during the repair of photosystem II, the assembly of the newly synthesized D1 protein into photosystem II occurs co-translationally involving direct interaction of the nascent D1 chains with the D2 protein.  相似文献   

13.
14.

Background

Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress.

Scope

Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis.

Conclusions

Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these ‘assembly’ factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.  相似文献   

15.
Chloroplast proteins that regulate the biogenesis, performance and acclimation of the photosynthetic protein complexes are currently under intense research. Dozens, possibly even hundreds, of such proteins in the stroma, thylakoid membrane and the lumen assist the biogenesis and constant repair of the water splitting photosystem (PS) II complex. During the repair cycle, assistance is required at several levels including the degradation of photodamaged D1 protein, de novo synthesis, membrane insertion, folding of the nascent protein chains and the reassembly of released protein subunits and different co-factors into PSII in order to guarantee the maintenance of the PSII function. Here we review the present knowledge of the auxiliary proteins, which have been reported to be involved in the biogenesis and maintenance of PSII.  相似文献   

16.
The kinetics of charge recombination by electron transfer from Q(A)(*-) to P680(*+) on the reducing branch of PSII is likely to be strongly dependent on protein dynamics, in analogy with the kinetics of the corresponding reaction in the reaction center of purple bacteria [Biophys. J. 74 (1998) 2567]. On the oxidizing branch of PSII, the kinetics of electron hole transfer from P680(*+) to Y(Z) is known to be multiexponential. This transfer is in the Babcock model of the reactions of the water-oxidizing complex coupled with proton transfer from Y(Z). The proton is via switching hydrogen bonds in the protein transferred to the thylakoid lumen. The demand for successive proton transfers requires rearrangement of the hydrogen bonds, which in turn requires a flexible protein making fluctuating excursions among all its conformations. In the equilibrated protein, only a fractional part of the molecules is in a conformation that is able to support the proton transfer from Y(Z). The kinetics of the rearrangement to this active conformation will be multiexponential and dependent on the distribution among all conformations, which is likely to be sensitive to various influences, in particular from changes in the protein coordination to the (Mn)(4) cluster between the different S states.  相似文献   

17.
Photosystem II is a large pigment-protein complex catalyzing water oxidation and initiating electron transfer processes across the thylakoid membrane. In addition to large protein subunits, many of which bind redox cofactors, photosystem II particles contain a number of low molecular weight polypeptides whose function is only poorly defined. Here we have investigated the function of one of the smallest polypeptides in photosystem II, PsbJ. Using a reverse genetics approach, we have inactivated the psbJ gene in the tobacco chloroplast genome. We show that, although the PsbJ polypeptide is not principally required for functional photosynthetic electron transport, plants lacking PsbJ are unable to grow photoautotrophically. We provide evidence that this is due to the accumulation of incompletely assembled water-splitting complexes, which in turn causes drastically reduced photosynthetic performance and extreme hypersensitivity to light. Our results suggest a role of PsbJ for the stable assembly of the water-splitting complex of photosystem II and, in addition, support a control of photosystem I accumulation through photosystem II activity.  相似文献   

18.
Biogenesis,assembly and turnover of photosystem II units   总被引:10,自引:0,他引:10  
Assembly of photosystem II, a multiprotein complex embedded in the thylakoid membrane, requires stoichiometric production of over 20 protein subunits. Since part of the protein subunits are encoded in the chloroplast genome and part in the nucleus, a signalling network operates between the two genetic compartments in order to prevent wasteful production of proteins. Coordinated synthesis of proteins also takes place among the chloroplast-encoded subunits, thus establishing a hierarchy in the protein components that allows a stepwise building of the complex. In addition to this dependence on assembly partners, other factors such as the developmental stage of the plastid and various photosynthesis-related parameters exert a strict control on the accumulation, membrane targeting and assembly of the PSII subunits. Here, we briefly review recent results on this field obtained with three major approaches: biogenesis of photosystem II during the development of chloroplasts from etioplasts, use of photosystem II-specific mutants and photosystem II turnover during its repair cycle.  相似文献   

19.
We have raised antibodies against several major components of photosystem II. These antisera, which are directed against the apoproteins of two chlorophyll-binding proteins (CPa-1 and CPa-2), the apoprotein of light-harvesting complex II and the 33-kDa extrinsic protein of the oxygen-evolving complex, were used to examine the light regulation of photosystem II assembly in maize. The principal findings of this study are as follows. The 33-kDa protein is present in dark-grown maize and the content increases 5-10-fold upon illumination. The level of the protein is mediated at least in part by phytochrome and is independent of the accumulation of chlorophyll. In contrast, none of the three chlorophyll-binding proteins examined was detectable in leaves of maize grown in darkness or under other light regimes where chlorophyll does not accumulate. Even in the absence of photosystem II assembly, the 33-kDa protein is properly transported across the thylakoid into the lumen. However, the protein does not attach in the normal way to the inner surface of the membrane under these conditions.  相似文献   

20.
The low molecular weight proteins of rat apo HDL and apo VLDL have been isolated and analyzed by the technique of isoelectric focusing. Sephadex fractions from apo HDL (HS-3) and apo VLDL (VS-3) that contain these proteins reveal three major bands with apparent isoelectric points of pH 4.50, 4.67, and 4.74, as well as three minor bands at pH 4.43, 4.57, and 4.61. In addition, apo HDL has a major band at pI of 4.83. DEAE-Cellulose chromatography was used to prepare purified fractions of these components that were characterized by N-terminal analyses and molecular weight determinantions by SDS gel electrophoresis. The major low molecular weight components of apo HDL were focused on a slab gel and the bands were identified as A-II (pI 4.83), C-II (pI 4.74), C-III-0 (pI 4.67), and C-III-3 (pI 4.50). Neuraminidase treatment of apo HDL, followed by isoelectric focusing, suggested that the other bands, which have not previously been reported, may be additional forms of the C-III protein, differing only in their content of sialic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号