首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
花粉蛋白质组学研究进展   总被引:1,自引:0,他引:1  
戴绍军 《植物学报》2007,24(3):319-329
花粉是高度退化的生物体(雄配子体), 在植物有性生殖过程中具有重要作用。解析花粉发育、花粉-柱头识别、萌发和花粉管生长等细胞学过程的分子机制是当前研究的热点问题之一。近年来, 应用高通量的蛋白质组学技术平台, 对水稻、拟南芥和裸子植物花粉的蛋白质组学研究揭示了花粉中表达蛋白质的功能类群特征。花粉中参与细胞壁代谢、蛋白质代谢、细胞骨架动态和信号转导的蛋白质被高度代表, 并且近1/4蛋白质有多个同工型。本文综述了花粉蛋白质组学的研究进展。  相似文献   

2.
放线菌蛋白质组学研究进展   总被引:1,自引:0,他引:1  
张瑶  徐平  李文均  陶勇 《生物工程学报》2014,30(7):1044-1058
蛋白质是生理功能的执行者,是生命现象的直接体现者,蛋白质组学旨在阐明生物体全部或部分蛋白质在生命活动中的作用和功能。随着组学理论基础和技术方法的逐渐成熟,蛋白质组学的研究被提高到了前所未有的高度。放线菌与人类的生产和生活关系极为紧密,是产生抗生素和酶制剂的主要来源。近130多年的放线菌系统学研究和2001年模式菌株的全基因组测序,为功能基因组研究奠定了基础。与先前的基因组学和转录组学相比,放线菌蛋白质组学能更直接、更准确地解释生命现象,得到了快速发展,并受到研究者的高度关注。近年来放线菌蛋白质组学的研究主要包括复杂形态分化和发育过程、非凡的环境适应能力、与植物共生固氮、代谢机理及特殊功能、病原放线菌致病性和筛查天然产物等几个方向,为进一步促进放线菌蛋白质组学发展奠定了基础。  相似文献   

3.
蛋白质磷酸化是生物体中广泛存在的翻译后修饰方式,参与多种过程的调节。精子是高度分化的特殊细胞,不具有转录活性,主要依赖于蛋白质的磷酸化完成精子成熟、分化和受精等过程。因此,对于精子磷酸化蛋白质组学的研究有助于进一步了解精子发生、精子获能、超激活以及精卵识别等过程的调控机制。本文简要综述了精子磷酸化蛋白质组学的研究方法及磷酸化蛋白质组学在精子中的应用,为精子磷酸化蛋白质组学在实际科研应用中提供了理论参考。  相似文献   

4.
人类基因组计划的完成标志着生命科学已进入后基因组时代,蛋白质组学的研究被提升到了前所未有的高度,蛋白质组学旨在阐明基因组所表达的真正执行生命活动的全部蛋白质的表达规律和生物功能。伴随葡萄基因组测序工作的完成,有关葡萄蛋白质组学的研究迅速发展。对近年来蛋白质组学在葡萄上的研究进行了综述,内容主要包括:葡萄蛋白质样品的提取制备,葡萄果实发育和品质形成过程中蛋白质组的变化,葡萄果皮、细胞壁、质膜等特定组织材料的蛋白质组研究,及蛋白质组学在葡萄逆境胁迫、体细胞胚的发生等方面的研究,并对葡萄蛋白质组学的发展趋势进行了展望。  相似文献   

5.
植物蛋白质组学研究若干重要进展   总被引:1,自引:0,他引:1  
植物蛋白质组学近年来正从定性向精确定量蛋白质组学的方向发展。国际上近两年发表的约160篇研究论文报道了利用不断改进的双向电泳结合生物质谱技术、多维蛋白质鉴定技术,以及包括双向荧光差异凝胶电泳、幅N体内代谢标记、同位素标记的亲和标签、同位素标记相对和绝对定量等在内的第2代蛋白质组学技术,对植物组织(器官)与细胞器、植物发育过程和植物响应环境胁迫的蛋白质组特征,以及植物蛋白质翻译后修饰和蛋白质相互作用等方面的研究成果。该文对上述报道进行总结,综述了2007年以来植物蛋白质组学若干重要问题研究的新进展。  相似文献   

6.
植物细胞壁蛋白质组学研究进展   总被引:1,自引:0,他引:1  
植物细胞壁蛋白质在细胞代谢和发育调控、细胞壁组分修饰、信号转导及胁迫响应等生物学事件中具有重要功能.最近,国内外学者开展了大量植物细胞壁蛋白质组学的研究工作,并取得了巨大进展.本文详述了细胞壁蛋白质的分类、提取、鉴定及生物信息学分析的最新进展,总结了植物细胞壁蛋白质组学的应用和面临的挑战,提出了植物细胞壁蛋白质组学研究的框架图,以期为植物细胞壁蛋白质组学的广泛研究提供借鉴.  相似文献   

7.
植物蛋白质组学研究若干重要进展   总被引:8,自引:1,他引:8  
喻娟娟  戴绍军 《植物学报》2009,44(4):410-425
植物蛋白质组学近年来正从定性向精确定量蛋白质组学的方向发展。国际上近两年发表的约160篇研究论文报道了利用不断改进的双向电泳结合生物质谱技术、多维蛋白质鉴定技术, 以及包括双向荧光差异凝胶电泳、15N体内代谢标记、同位素标记的亲和标签、同位素标记相对和绝对定量等在内的第2代蛋白质组学技术, 对植物组织(器官)与细胞器、植物发育过程和植物响应环境胁迫的蛋白质组特征, 以及植物蛋白质翻译后修饰和蛋白质相互作用等方面的研究成果。该文对上述报道进行总结, 综述了2007年以来植物蛋白质组学若干重要问题研究的新进展。  相似文献   

8.
蛋白质芯片在蛋白质组学研究中的作用   总被引:2,自引:0,他引:2  
费嘉  马文丽  郑文岭 《生命科学》2005,17(2):132-136
蛋白质芯片是以高度并行性、高通量、微型化和自动化为特点的蛋白质组检测技术。本文综述了蛋白质芯片在蛋白质组学研究中的多种作用,包括普通蛋白质芯片在微量蛋白质分离、蛋白质与蛋白质之间以及蛋白质与其他小分子间相互作用和蛋白质定量检测方面的作用,普通蛋白质芯片通过与质谱技术、生物传感器技术的结合而拓展其应用范围,以及蛋白质组芯片、活性的蛋白质芯片在蛋白质组学研究中应用的进展。  相似文献   

9.
线粒体是真核生物中重要的细胞器,其包含的全部蛋白质称为线粒体蛋白质组。人类线粒体大约包含1500多种蛋白质,由核基因和线粒体基因共同编码。线粒体是细胞能量合成和物质代谢的中心,其功能障碍将直接或问接引起许多疾病。目前线粒体蛋白质组学正是系统性地研究线粒体在生理、病理过程中的功能变化以及研究疾病发生机制的重要方法。将线粒体蛋白质组的研究方法、研究进展、线粒体蛋白质组的性质及其在相关疾病研究中的作用进行综述,并对线粒体蛋白质组学在疾病发生机制和诊断治疗中的发展前景进行展望。  相似文献   

10.
蛋白质磷酸化是最常见的蛋白质翻译后修饰形式。由于蛋白质的磷酸化形式可以被磷酸酶和磷酸激酶进行可逆的调控,所以在众多的生命活动过程中蛋白质的磷酸化修饰起着重要的调控作用,因此对生物体内蛋白质磷酸化修饰的系统研究对于揭示生命科学的奥秘显得十分重要。近年来,随着质谱技术和生物信息学软件以及磷酸化肽段富集方法的发展,利用质谱对生物体内蛋白质磷酸化修饰研究的技术逐渐成熟。肝脏作为人体最重要的代谢和免疫器官,深入研究肝脏细胞内蛋白质磷酸化修饰形式对于理解其功能具有重要指导意义。目前,迅速发展的磷酸化蛋白质组学技术已经被广泛应用到肝脏功能的生物学研究中。这些研究加深了人们对肝脏的生理及病理状态的分子生物学机制的了解。本文综述了当前磷酸化蛋白质组学的研究进展和磷酸化蛋白质组学在肝脏中的研究。  相似文献   

11.
Dai S  Li L  Chen T  Chong K  Xue Y  Wang T 《Proteomics》2006,6(8):2504-2529
As a highly reduced organism, pollen performs specialized functions to generate and carry sperm into the ovule by its polarily growing pollen tube. Yet the molecular genetic basis of these functions is poorly understood. Here, we identified 322 unique proteins, most of which were not reported previously to be in pollen, from mature pollen of Oryza sativa L. ssp japonica using a proteomic approach, 23% of them having more than one isoform. Functional classification reveals that an overrepresentation of the proteins was related to signal transduction (10%), wall remodeling and metabolism (11%), and protein synthesis, assembly and degradation (14%), as well as carbohydrate and energy metabolism (25%). Further, 11% of the identified proteins are functionally unknown and do not contain any conserved domain associated with known activities. These analyses also identified 5 novel proteins by de novo sequencing and revealed several important proteins, mainly involved in signal transduction (such as protein kinases, receptor kinase-interacting proteins, guanosine 5'-diphosphate dissociation inhibitors, C2 domain-containing proteins, cyclophilins), protein synthesis, assembly and degradation (such as prohibitin, mitochondrial processing peptidase, putative UFD1, AAA+ ATPase), and wall remodeling and metabolism (such as reversibly glycosylated polypeptides, cellulose synthase-like OsCsLF7). The study is the first close investigation, to our knowledge, of protein complement in mature pollen, and presents useful molecular information at the protein level to further understand the mechanisms underlying pollen germination and tube growth.  相似文献   

12.
Rice crops are vulnerable to low temperatures. During development, the reproductive stage is particularly sensitive to cold exposure, which causes abnormal pollen development and a high degree of male sterility. In this study, shotgun proteomic analysis was used to analyze rice anthers containing pollen grains from a cold-tolerant variety, Dianxi 4. Protein expression was compared between normal anthers and anthers exposed to cold temperatures at the young microspore stage. In total, 3835 non-redundant proteins were identified in the rice anther. Of these, 441 proteins were differentially expressed between normal and cold-treated anthers. Pollen allergens, ATP synthase, actin, profilin, and β-expansin proteins were highly abundant, reflecting anther development, pollen germination, and pollen tube elongation. Starch and sucrose metabolic proteins such as α-amylase precursor and 4-α-glucanotransferase exhibited reduced expression after cold exposure. Among the proteins that exhibited increased expression after cold exposure, C2 domain proteins, and GRPs were identified as candidate signaling factors for mediation of the cold tolerance response. Through high-throughput proteomic analysis we were able to reveal proteomic changes against cold stress and suggest two signaling factors as the candidate genes.  相似文献   

13.
The pollen tube is a tip-growing system that delivers sperm to the ovule and thus is essential for sexual plant reproduction. Sucrose and other microelements act as nutrients and signaling molecules through pathways that are not yet fully understood. Taking advantage of high-throughput liquid chromatography coupled to mass spectrometry (LC-MS), we performed a label-free shotgun proteomic analysis of pollen in response to nutrient limitation using mass accuracy precursor alignment. We compared 168 LC-MS analyses and more than 1 million precursor ions and could define the proteomic phenotypes of pollen under different conditions. In total, 166 proteins and 42 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, providing new insights into the multifaceted mechanism of nutrient function. The phosphorylation of proteins involved in cytoskeleton dynamics was found to be specifically responsive to Ca(2+) and sucrose deficiency, suggesting that sucrose and extracellular Ca(2+) influx are necessary for the maintenance of cytoskeleton polymerization. Sucrose limitation leads to widespread accumulation of proteins involved in carbohydrate metabolism and protein degradation. This highlights the wide range of metabolic and cellular processes that are modulated by sucrose but complicates dissection of the signaling pathways.  相似文献   

14.
This paper presents an analysis of Holm oak pollen proteome, together with an evaluation of the potentiality that a proteomic approach may have in the provenance variability assessment. Proteins were extracted from pollen of four Holm oak provenances, and they were analyzed by gel-based (1- and 2-DE in combination with MALDI-TOF/TOF) and gel-free (nLC-LTQ Orbitrap MS) approaches. A comparison of 1- and 2-DE protein profiles of the four provenances revealed significant differences, both qualitative and quantitative, in abundance (18 bands and 16 spots, respectively). Multivariate statistical analysis carried out on bands and spots clearly showed distinct associations between provenances, which highlight their geographical origins. A total of 100 spots selected from the 402 spots observed on 2-DE gels were identified by MALDI-TOF/TOF. Moreover, a complementary gel-free shotgun approach was performed by nLC-LTQ Orbitrap MS. The identified proteins were classified according to biological processes, and most proteins in both approaches were related to metabolism and defense/stress processes. The nLC-LTQ Orbitrap MS analysis allowed us the identification of proteins belonging to the cell wall and division, transport and translation categories. Besides providing the first reference map of Holm oak pollen, our results confirm previous studies based on morphological observations and acorn proteomic analysis. Moreover, our data support the valuable use of proteomic techniques as phylogenetic tool in plant studies.  相似文献   

15.
16.
The present study is aimed at identifying molecular changes elicited by Cr(III) and Cr(VI) on germinating kiwifruit pollen. To address this question, comparative proteomic and DNA laddering analyses were performed. While no genotoxic effect was detected, a number of proteins whose accumulation levels were altered by treatments were identified. In particular, the upregulation of some proteins involved in the scavenging response, cell redox homeostasis and lipid synthesis could be interpreted as an oxidative stress response induced by Cr treatment. The strong reduction of two proteins involved in mitochondrial oxidative phosphorylation and a decline in ATP levels were also observed. The decrease of pollen energy availability could be one of the causes of the severe inhibition of the pollen germination observed upon exposure to both Cr(III) and Cr(VI). Finally, proteomic and biochemical data indicate proteasome impairment: the consequential accumulation of misfolded/damaged proteins could be an important molecular mechanism of Cr(III) toxicity in pollen.  相似文献   

17.
Proteome mapping of mature pollen of Arabidopsis thaliana   总被引:6,自引:0,他引:6  
  相似文献   

18.
Mature pollen grain represents a highly desiccated structure with an extremely tough cell wall. Thanks to it, it resists common proteomic protocols. Instead, a robust homogenization has to be performed since proteins are needed to burst out of the cell to be included in the extracted proteome fraction. Here, a novel way of pollen homogenization employing Roche MagNA Lyser Instrument is presented, sparing time and laborious work. However, plant proteomics does not rely solely on perfect homogenization; also the choice of the extraction protocol is of key importance. The composition of the extraction buffer has a decisive influence on which proteome fraction will be extracted. Therefore the second part of our study is dedicated to the comparison of different extraction protocols with respect to subsequent proteomic analyses.  相似文献   

19.
Kerim T  Imin N  Weinman JJ  Rolfe BG 《Proteomics》2003,3(5):738-751
We used proteomic analysis to investigate the changing patterns of protein synthesis during pollen development in anthers from rice plants grown under strictly controlled growth conditions. Cytological analysis and external growth measurements such as anther length, auricle distances and days before flowering were used to determine pollen developmental stages. This allowed the collection of synchronous anther materials representing six discrete pollen developmental stages. Proteins were extracted from the anther samples and separated by two-dimensional gel electrophoresis to produce proteome maps. The anther proteome maps of different developmental stages were compared and 150 protein spots, which were changed consistently during development, were analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to produce peptide mass fingerprint (PMF) data. Database searches using these PMF data revealed the identities of 40 of the protein spots analyzed. These 40 proteins represent 33 unique gene products. Four protein spots that could not be identified by PMF analysis were analysed by N-terminal microsequencing. Multiple charge-isoforms of vacuolar acid invertase, fructokinase, beta-expansin and profilin were identified. These proteins are closely associated with sugar metabolism, cell elongation and cell expansion, all of which are cell activities that are essential to pollen germination. The existence of multiple isoforms of the same proteins suggests that during the process of pollen development some kind of post-translational modification of these proteins occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号