首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mating systems have long been recognized as key factors determining genetic structure within and between populations. Outcrossing promotes genetic diversity and gene flow between populations, while inbreeding, on the other hand, decreases recombination rates, facilitating fixation of co-adapted genes. In small populations, selfing moderates pollen limitation because of low mate availability, but at the cost of increased inbreeding depression. These conflicts are of more than theoretical interest; they are critical for the management of endangered species. In order to help designing conservation strategies for the management of the gene pool of fragmented populations of Pinus cembra, a protected species in Poland, we have characterized pollen flow and mating structure using nuclear microsatellite markers. We demonstrated that P. cembra in the studied stands of the Tatra Mts. is characterized by an average outcrossing rate (t) of 0.72. Unlike with the existing approaches, using the newly developed Bayesian method, we found that population size and seasonal variation had confounding effects on outcrossing rates. In concordance with predictions, large populations showed significantly higher outcrossing rates (t?=?0.89) than smaller ones (t?=?0.51). Temporal variation revealed in the outcrossing rate might be linked with masting behavior of the species. On the other hand, we showed that outcrossing rates were not associated with a trunk diameter of a mother tree. Our study also demonstrated that biparental inbreeding is a significant component of mating system. However, we further show that pollen dispersal follows a fat-tailed distribution (with the average dispersal distance of 1,267 m) so that at least some long-distance pollen dispersal must be occurring. Overall, we conclude that the high inbreeding (both selfing and mating between relatives) found in P. cembra buffers for pollen limitation. We argue that small, isolated stands can be at risk of gene pool erosion, despite the potential for long-distance pollen and seed dispersal.  相似文献   

2.
Swiss stone pine Pinus cembra L. is a species with fragmented range, occurring in the Alpine-East Carpathian mountain system. Seeds of P. cembra are dispersed by nutcrackers, which offers potential possibilities for gene exchange among populations. Using isozyme analysis, we have examined five samples from two parts of the Swiss stone pine range: the Alps (Switzerland and Austria) and the Carpathians (two samples from the northern macroslope of the Gorgany Ridge, Eastern Carpathians, Ivano-Frankivs'ka oblast and one sample from Zakarpats'ka oblast of Ukraine). The allele frequencies of 30 isozyme loci, coding for enzymes ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6-PGD, PGI, PGM, SDH, SKDH, SOD, were analyzed using cluster analysis and Principal Component Analysis. Two clusters, corresponding to the isolated Alpine and Carpathian parts of the range, were found. The main contribution to these differences were made by loci Adh-1, Adh-2, Fest-2, Lap-3, Mdh-4, and Sod-4. The interpopulation differentiation proved to be somewhat higher than that typical for pines (FST = 7.4%), but within the limits characteristic for taxonomically close species. Thus, isolation of the populations did not lead to their marked differentiation, which may be explained by gene flow and balancing selection, which equalizes gene frequencies across the fragmented species area. Interlocus (FST heterogeneity (from 0.003 to 0.173) suggests adaptive significance of some of the allozyme polymorphisms or linkage of some loci with adaptive genes. The Carpathian populations were shown to have higher gene diversity than the Alpine ones (expected heterozygosities 0.095–0.114 and 0.060–0.080, respectively). A deficiency of heterozygotes (as compared to the Hardy-Weinberg proportions), observed in the embryo sample, was probably explained by inbreeding. The reduction in the area of Carpathian pine forests in Holocene, caused by the global climatic changes and the anthropogenic impact, is hazardous for the gene pool of the species. The maintenance of genetic uniqueness of both Carpathian populations of P. cembra in general, and individual stands in particular, requires special measures for protection of Swiss stone pine in the Eastern Carpathians.  相似文献   

3.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

4.
The Sinai primrose (Primula boveana) is one of the most endangered plant species worldwide, with less than 200 wild individuals surviving in the Sinai mountains of Egypt. There has been a decline in both the number and size of its populations in recent times, possibly caused by threats that include habitat aridification and the impact of human activities. Studying the standing genetic variation and extent of inbreeding of P. boveana is necessary for the design of appropriate conservation strategies for this species. In the present work, we used a set of seven, recently developed, polymorphic microsatellite markers to characterize the genetic variation and levels of inbreeding of the extant populations of P. boveana. We found low levels of genetic variation (H T = 0.470), high differentiation between populations (F ST = 0.737, R ST = 0.935), and very elevated levels of inbreeding (F = 0.862) due to recurrent selfing. These results may be the reflection of low levels of genetic variation and high levels of inbreeding over a long evolutionary period, suggesting that the current genetic pool of the species may enable P. boveana to persist in a habitat where water availability and pollinator services are restricted. Nevertheless, in sight of its rapidly dwindling abundance, it seems prudent to adopt swift measures, including habitat restoration and ex-situ conservation, to prevent the impending extinction of this emblematic species.  相似文献   

5.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

6.
We developed eight polymorphic nuclear microsatellite markers for the Swiss stone pine (Pinus cembra L.), of which seven may be amplified in a multiplex polymerase chain reaction. Allelic polymorphism across all loci and 40 individuals representing two populations in the Swiss Alps was high (mean = 7.6 alleles). No significant linkage disequlibrium was displayed between pairs of loci. Significant deviation from Hardy–Weinberg equilibrium was revealed at three loci in one population. Cross–amplification was achieved in two related species within the genus (P. sibirica and P. pumila). Thus, the markers may be useful for population genetic studies in these three pine species. They will be applied in ongoing projects on genetic diversity and patterns of gene flow in P. cembra.  相似文献   

7.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

8.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

9.
The pine cone weevil, Pissodes validirostris Gyll. (Coleoptera: Curculionidae), attacks seed cones of most Eurasian pine species, except these of Swiss stone pine (Pinus cembra L.). Behavioural responses of adult weevils to cone volatile emissions of Swiss stone pine and to those of a common host, mountain pine (Pinus uncinata Ram.), were compared in an olfactometer. Weevils were significantly attracted by the volatile blend emitted by mountain pine, but Swiss stone pine volatiles elicited an inverse response, with most weevils moving in the opposite direction to the odour source. However, the majority of second instar weevil larvae that were extracted from mountain pine cones and transferred into Swiss stone pine cones were capable of developing to the adult stage. This suggests that Swiss stone pine cones do not contain strong feeding deterrents that could prevent larval development. The possible factors involved in the absence of colonization of Swiss stone pine cones by cone weevils are discussed.  相似文献   

10.
The spotted sea bass, Lateolabrax maculatus, is popular in recreational fishing and aquaculture in Korea. Its natural population has declined during the past two decades; thus, beginning in the early 2000s stock-enhancement programs were introduced throughout western and southern coastal areas. In this study, genetic similarities and differences between wild and hatchery populations were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 96 alleles were identified. Although many unique alleles were lost in the hatchery samples, no significant reductions were found in heterozygosity or allelic diversity in the hatchery compared to the wild population. High genetic diversity (He = 0.724–0.761 and Ho = 0.723–0.743), low inbreeding coefficient (F IS = 0.003–0.024) and Hardy–Weinberg equilibrium were observed in both wild and hatchery populations. However, the genetic heterogeneity between the populations was significant. Therefore, genetic drift likely promoted inter-population differentiation, and rapid loss of genetic diversity remains possible. Regarding conservation, genetic variation should be monitored and inbreeding controlled in a commercial breeding program.  相似文献   

11.
Gossypium mustelinum is a wild cotton relative found only in the semiarid region of Bahia state in Brazil, and changes caused by humans in the natural habitat of this species have endangered the existence of several natural populations. Information about the occurrence and genetic composition of these populations is necessary to design effective conservation measures. The aim of this study was to characterize the in situ maintenance mode and assess the genetic diversity of G. mustelinum populations in the basin of the De Contas River. A sample of 205 G. mustelinum specimens was collected from the margins of the Jacaré, Riacho Quixaba, Riacho Serra Azul, and Riacho Riachão rivers and genotyped using 13 SSR primer pairs. In general, all G. mustelinum populations exhibit inadequate in situ maintenance, predominantly due to the deforestation of riparian vegetation and herbivory. The observed total genetic diversity of G. mustelinum was significant (H E = 0.489), highly structured (F ST = 0.534), and organized in homozygous genotypes (F IS = 0.873). The high observed inbreeding level is consistent with the predominance of self-fertilization and geitonogamy (t m = 0.234). In addition, the pattern of genetic structure tended to form groups that coincided with the collection sites, i.e., first clustering within subpopulations, then within populations, and finally within the closest populations. Thus, the observed genetic diversity is likely to be rapidly lost, and conservation measures should therefore be undertaken.  相似文献   

12.
Tricyrtis ishiiana is a relic endemic plant taxon of the Convallariaceae that inhabits two nearby gorges in Kanagawa Prefecture, Japan. The distribution range and number of populations are thought to have been reduced to the present refugial populations during the Quaternary climatic oscillations. Because of its showy flowers, this plant has faced illegal removal from its natural habitats for horticultural use and has been designated a critically endangered species (class IA). In this study, we analyzed the genetic structure of the relict populations of T. ishiiana in order to contribute to the conservation strategies of the prefectural government. Our analyses of nine nuclear microsatellite loci detected high genetic diversity (H E = 0.704 and H O = 0.541) for the two populations. The two populations were slightly differentiated (R ST = 0.032), accompanied by faint substructure across the populations (K = 3). In addition, each population exhibited spatial genetic structuring. The relatively low inbreeding coefficient for both populations together (F IS = 0.233) and each population separately (F IS = 0.217?C0.246) may be attributable to crossing among descendants within a population along with occasional gene flow between the populations. These results suggested that the extant populations have not experienced a severe bottleneck. The two extant populations were genetically differentiated at a very low level, accompanied by occasional pollen flow via pollinators and/or seed dispersal by gravity in the mountainous environment. Occasional gene exchange between the populations has allowed T. ishiiana to harbor high genetic diversity despite being a relic plant confined to two small refugial populations.  相似文献   

13.
Molecular genetic markers may reveal informative patterns of population processes such as historical migration, which may substantiate inference on postglacial re-colonization inferred, e.g., from fossil records. Palynological records of Swiss stone pine (Pinus cembra) suggest that the species has re-colonized the central Alps from a southeastern Alpine refugium after the last glacial maximum. Such a migration pathway likely resulted in a gradual decrease in genetic diversity with increasing distance to the glacial refugium, owing to founder events at the leading range edge. The present distribution of P. cembra in Switzerland consists of two rather distinct ranges, namely the inner-alpine parts of the Grisons and Valais, respectively, and additional disjunct occurrences in the northern and southern periphery of the Alps as well as between the two main ranges. We screened chloroplast microsatellite loci on 39 Swiss P. cembra populations and show that the genetic structure detected was congruent with a common ancestry from a single glacial refugium, likely located at the (south-)eastern periphery of the Alps. In contrast, our data rejected the alternative hypothesis of a distinct genetic separation of the two main ranges of Swiss stone pine in Switzerland. We further show that low genetic diversity within and high differentiation among peripheral populations in the northern Alps as well as the genetic differentiation between core and peripheral populations reflect genetic drift as a consequence of colonization history and limited gene flow by pollen and seed.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Zusammenfassung  Molekulargenetische Marker enthalten wertvolle Information über Populationsprozesse wie historische Wanderungen, wodurch Annahmen zur postglazialen Wiederbesiedelung, beispielsweise abgeleitet von Fossilfunden, unterstützt werden k?nnen. Palynologische Funde von Arve (Pinus cembra) lassen vermuten, dass diese Art nach dem letzten glazialen Maximum von einem Refugium in den süd?stlichen Alpen wieder in die zentralen Alpen eingewandert ist. Ein solcher Rückwanderungsweg dürfte aufgrund von Gründereffekten an der Wanderungsfront eine graduelle Verringerung der genetischen Variation mit zunehmender Distanz zum Glazialrefugium bewirkt haben. Die heutige Verbreitung von P. cembra in der Schweiz weist zwei deutlich getrennte Gebiete auf, n?mlich inneralpine Bereiche der Kantone Graubünden und Wallis, mit jeweils isolierten Vorkommen in den n?rdlichen und südlichen Randalpen. Wir untersuchten Chloroplasten-Mikrosatelliten in 39 Schweizer Populationen von P. cembra und zeigen, dass die gefundene genetische Struktur übereinstimmt mit der Annahme einer gemeinsamen Abstammung aus einem einzigen Glazialrefugium, welches vermutlich am (süd-)?stlichen Rand der Alpen lag. Im Gegensatz dazu widerlegen unsere Daten die alternative Hypothese einer deutlichen genetischen Trennung der zwei Hauptvorkommen der Arve in der Schweiz. Im Weiteren zeigen unsere Resultate eine geringe genetische Variation innerhalb und einen hohen Differenzierungsgrad zwischen n?rdlichen Randalpenvorkommen, sowie eine genetische Differenzierung zwischen zentralen und peripheren Populationen. Dies weist auf genetische Drift hin, welche die Besiedlungsgeschichte und einen beschr?nkten Genfluss durch Pollen und Samen widerspiegelt.
  相似文献   

14.
Genetics can provide information that is critical for planning translocations for conservation, such as levels of diversity and divergence of target and source populations. For clonal plants, assessing population characteristics (size, diversity, mortality, gene flow) that influence conservation values also requires identification of different genetic individuals. We used 12 microsatellite markers to guide germplasm source recommendations for augmentation and introduction translocations to conserve the critically endangered Eucalyptus cuprea that occurs in fragmented populations in the semi-arid shrublands of Western Australia. Ramet clumps with identical multilocus genotypes were identified in all populations but clonal richness (R = 0 ? 0.86) and heterogeneity (D = 0 ? 0.98) varied among populations. Genetic diversity was low to moderate in all populations (mean H o = 0.61, mean A = 3.78) and did not differ significantly between localities. There was evidence of inbreeding in some populations but outcrossing (t m = 0.495) in the small number of families available for study (N = 4) and genotypic diversity of the larger extant populations suggest the generation of novel genotypes is a component of the reproductive strategy. Most diversity was within populations and differentiation among populations was moderate (F ST = 0.100) suggesting mixing of source population for translocation is unlikely to lead to outbreeding depression. Principal Co-ordinate and Bayesian analyses indicated the Northern population is distinct from Central/Southern populations. We recommend use of mixed germplasm to conserve the moderate diversity characterising larger remnant populations and to enable the production of recombinants through sexual reproduction. But given seed availability and the distinction of the Northern population, an initial precautionary approach to a translocation proposed for south of the geographical range may be to source germplasm from the Central/Southern locality.  相似文献   

15.
The Mongolian racerunner (Eremias argus) is a small lacertid lizard species, and its distribution range encompasses the Korean Peninsula, Mongolia, China and Russia. Eremias argus is widespread, but populations on the Korean Peninsula are small and declining, provoking concerns that genetic diversity is being lost. This species is currently listed under the Protection of Wild Fauna and Flora Act in South Korea. In this study, nine novel microsatellites for E. argus were developed with a biotin-enrichment method and used to understand its population genetic structure and delineate conservation units on the Korean Peninsula. Overall, low intrapopulation genetic diversity was observed (mean number of alleles per locus = 2.463; mean H E = 0.398) from 10 populations investigated (n = 110). Two populations (among five with n≥ 10) showed an excess of heterozygosity expected under HWE relative to that expected at mutation-drift equilibrium, indicating severe reduction in population sizes. With only a few exceptions, the overall genetic differentiation among populations was substantial with the high levels of pairwise-F ST (0.006–0.746) and -R ST (0.034–0.940) values. The results of Bayesian STRUCTURE analysis showed that E. argus populations on the Korean Peninsula were most likely partitioned into three genetic clusters. Taken all together, such low levels of gene flow and strong genetic structuring have critical implications for the conservation of this endangered species and its management.  相似文献   

16.
European wolf (Canis lupus) populations have suffered extensive decline and range contraction due to anthropogenic culling. In Bulgaria, although wolves are still recovering from a severe demographic bottleneck in the 1970s, hunting is allowed with few constraints. A recent increase in hunting pressure has raised concerns regarding long-term viability. We thus carried out a comprehensive conservation genetic analysis using microsatellite and mtDNA markers. Our results showed high heterozygosity levels (0.654, SE 0.031) and weak genetic bottleneck signals, suggesting good recovery since the 1970s decline. However, we found high levels of inbreeding (F IS  = 0.113, SE 0.019) and a N e/N ratio lower than expected for an undisturbed wolf population (0.11, 95 % CI 0.08–0.29). We also found evidence for hybridisation and introgression from feral dogs (C. familiaris) in 10 out of 92 wolves (9.8 %). Our results also suggest admixture between wolves and local populations of golden jackals (C. aureus), but less extensive as compared with the admixture with dogs. We detected local population structure that may be explained by fragmentation patterns during the 1970s decline and differences in local ecological characteristics, with more extensive sampling needed to assess further population substructure. We conclude that high levels of inbreeding and hybridisation with other canid species, which likely result from unregulated hunting, may compromise long-term viability of this population despite its current high genetic diversity. The existence of population subdivision warrants an assessment of whether separate management units are needed for different subpopulations. Our study highlights conservation threats for populations with growing numbers but subject to unregulated hunting.  相似文献   

17.
Taxus wallichiana var. mairei is an endangered conifer with important medicinal value in southern China. Nuclear SSR markers were employed to assess genetic diversity and structure of 13 geographically disjunct populations. The present study revealed a moderate genetic diversity (HE = 0.538) and low genetic differentiation (FST = 0.159). And most populations encountered in severe inbreeding and bottleneck effect. No significant genetic structure was detected by IBD and Structure analysis, which was supported by AMOVA analysis. The present results could be ascribed to an earlier period of more pronounced gene flow when the species had a more continuous distribution. However, the 13 studied populations were divided into four clusters based on the UPGMA dendrogram; these clusters were almost congruent with their geographical distributions. Vital areas such as southern mountains of Sichuan basin, Nanling Mts. and the margin of this yew's distribution range had a high priority for conservation.  相似文献   

18.
Coscinium fenestratum is a critically endangered medicinal plant, well-known for its bioactive isoquinoline alkaloid berberine. The species has been over harvested from its natural habitats to meet the huge requirement of raw drug market and industrial consumption. This has lead to a rapid decline in the population size and has also led to local population extinction at few locations in the Western Ghats, India. In this study, inter-simple sequence repeat markers were used to investigate the genetic variation and population structure of seven extant populations of C. fenestratum from the central Western Ghats, India. Eight primer combination produced a total of 57 unambiguous bands, of which (47.1 %) were polymorphic. The species exhibited a moderate to low level of intra population genetic diversity (H s = 0.347 ± 0.008; H t = 0.378 ± 0.006 (POPGENE) and H s = 0.262 ± 0.0028; H t = 0.204 ± 0.020 (HICKORY)). The populations were low to moderately differentiated from one another (G ST = 0.221) and geographical distance was not significantly correlated with genetic distance, suggesting that these long-lived, geographically distant remnant populations were once connected through gene flow. There was a significant amount of genetic variation among populations (19.85 %). The Bayesian software STRUCTURE and HICKORY were used to further reveal the genetic structure of C. fenestratum. The results revealed weak population structure (K = 2) with one single widespread gene pool, and indicated that gene flow and inbreeding are likely to be the major driving force in shaping current population genetic structure of C. fenestratum. Thus, an understanding of the genetic diversity and population structure of C. fenestratum can provide insight into the conservation and management of this species.  相似文献   

19.
When habitat becomes fragmented, populations of species may become increasingly isolated. In the absence of habitat corridors, genetic structure may develop and populations risk reductions in genetic diversity from increased genetic drift and inbreeding. Deforestation of the Cerrado biome of Brazil, particularly of the dry forests within the Paranã River Basin, has incrementally occurred since the 1970s and increased forest fragmentation within the region. We performed landscape genetic analyses of Pfrimer’s parakeet (Pyrrhura pfrimeri), a globally endangered endemic to the region, to determine if forest fragmentation patterns were associated with genetic structuring in this species. We used previously generated satellite imagery that identified the locations of Paranã River Basin forest fragments in 1977, 1993/94, and 2008. Behavioral data quantifying the affinity of Pfrimer’s parakeet for forest habitat was used to parameterize empirically derived landscape conductance surfaces. Though genetic structure was observed among Pfrimer’s parakeet populations, no association between genetic and geographic distance was detected. Likewise, least cost path lengths, circuit theory-based resistance distances, and a new measure of least cost path length complexity could not be conclusively associated with genetic structure patterns. Instead, a new quantity that encapsulated connection redundancy from the 1977 forest fragmentation data provided the clearest associations with pairwise genetic differentiation patterns (Jost’s D: r = 0.72, P = 0.006; FST: r = 0.741, P = 0.001). Our analyses suggest a 35-year or more lag between deforestation and its effect on genetic structure. Because 66 % of the Paranã River Basin has been deforested since 1977, we expect that genetic structure will increase substantially among Pfrimer’s Parakeet populations in the future, especially if fragmentation continues at its current pace.  相似文献   

20.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号