首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide nucleotide transhydrogenase (Nnt) detoxifies reactive oxygen species (ROS), byproducts of mitochondrial metabolism that, when accumulated, can decrease mitochondrial ATP production. In this issue of Cell Metabolism, demonstrate that Nnt in pancreatic beta cells is important for insulin release. Their compelling data highlight the critical roles for ATP generation and subsequent closure of KATP channels for insulin secretion.  相似文献   

2.
3.
4.
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.  相似文献   

5.
6.
Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.  相似文献   

7.
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.  相似文献   

8.
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.  相似文献   

9.
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y13-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y13 receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y13 plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y13 receptors, contribute to glucolipotoxicity.  相似文献   

10.
Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP) MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS). HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.  相似文献   

11.
Previous studies using in vitro cell culture systems have shown the role of the dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) maintenance. However, it remains to be tested whether these functions of Opa1 are physiologically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse Opa1 in pancreatic beta cells, in which glucose-stimulated ATP production in mitochondria plays a key role in insulin secretion. Beta cells lacking Opa1 maintained normal copy numbers of mtDNA; however, the amount and activity of electron transport chain complex IV were significantly decreased, leading to impaired glucose-stimulated ATP production and insulin secretion. In addition, in Opa1-null beta cells, cell proliferation was impaired, whereas apoptosis was not promoted. Consequently, mice lacking Opa1 in beta cells develop hyperglycemia. The data suggest that the function of Opa1 in the maintenance of the electron transport chain is physiologically relevant in beta cells.  相似文献   

12.

Aim

We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2−/−) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells.

Methods

Isolated islets from βTSC2−/− mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes.

Results

Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2−/− mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2−/− mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2−/− mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.

Conclusion

Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.  相似文献   

13.
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.  相似文献   

14.
GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.  相似文献   

15.
The NADH shuttle system, which transports reducing equivalents from the cytosol to the mitochondria, is essential for the coupling of glucose metabolism to insulin secretion in pancreatic beta cells. Aralar1 and citrin are two isoforms of the mitochondrial aspartate/glutamate carrier, one key constituent of the malate-aspartate NADH shuttle. Here, the effects of Aralar1 overexpression in INS-1E beta cells and isolated rat islets were investigated for the first time. We prepared a recombinant adenovirus encoding for human Aralar1 (AdCA-Aralar1), tagged with the small FLAG epitope. Transduction of INS-1E cells and isolated rat islets with AdCA-Aralar1 increased aralar1 protein levels and immunostaining revealed mitochondrial localization. Compared with control INS-1E cells, overexpression of Aralar1 potentiated metabolism secretion coupling stimulated by 15 mm glucose. In particular, there was an increase of NAD(P)H generation, of mitochondrial membrane hyperpolarization, ATP levels, glucose oxidation, and insulin secretion (+45%, p < 0.01). Remarkably, this was accompanied by reduced lactate production. Rat islets overexpressing Aralar1 secreted more insulin at 16.7 mm glucose (+65%, p < 0.05) compared with controls. These results show that aspartate-glutamate carrier capacity limits glucose-stimulated insulin secretion and that Aralar1 overexpression enhances mitochondrial metabolism.  相似文献   

16.
The ability of dispersed islet cells in a perifusion system to secret glucagon and insulin in response to physiologic stimuli was investigated. Normal hamster islets were isolated by collagenase digestion and the cells dispersed by sequential digestion with collagenase and trypsin. Following a 50-min period of equilibrium in buffer with high glucose concentrations (5.0 mg/ml), glucagon secretion was stimulated by glucopenia and subsequently, inhibited by increasing the concentration of glucose. The responsiveness to glucose inhibition was significantly less in dispersed islet cells than in intact islets. However, the dispersed islet cells showed significantly greater response to arginine. Glucagon secretion by dispersed islet cells was stimulated to tolbutamide and epinephrine but somatostatin had no effect. Dispersed islet cell preparations did not augment insulin secretion in response to glucose but did secrete more insulin in response to arginine. Intact islets secreted insulin in response to glucose but not arginine. We conclude that A cells in cell suspension do not need direct contact or an intact intra-islet environment in order to respond to glucose, arginine, epinephrine, or tolbutamide but the extent of response may be influenced by paracrine effects. However, paracrine relationships may be important in determining the response of B cells to secretagogues.  相似文献   

17.
KCNQ1, located on 11p15.5, encodes a voltage-gated K+ channel with six transmembrane regions, and loss-of-function mutations in the KCNQ1 gene cause hereditary long QT syndrome. Recent genetic studies have identified that single nucleotide polymorphisms located in intron 15 of the KCNQ1 gene are strongly associated with type 2 diabetes and impaired insulin secretion. In order to understand the role of KCNQ1 in insulin secretion, we introduced KCNQ1 into the MIN6 mouse β-cell line using a retrovirus-mediated gene transfer system. In KCNQ1 transferred MIN6 cells, both the density of the KCNQ1 current and the density of the total K+ current were significantly increased. In addition, insulin secretion by glucose, pyruvate, or tolbutamide was significantly impaired by KCNQ1-overexpressing MIN6 cells. These results suggest that increased KCNQ1 protein expression limits insulin secretion from pancreatic β-cells by regulating the potassium channel current.  相似文献   

18.
19.
Normal and hypophysectomized (hypox) rats, fed ad libitum, received intraperitoneal injections of tolbutamide (75 mg/kg/day) or of saline for 6 weeks. 24 h after the last injection, blood samples were taken for glucose, insulin and glucagon determinations. In normal rats, tolbutamide treatment did not alter serum glucose, insulin and glucagon, although it suppressed the secretion of insulin and glucagon by the pancreatic islets. In hypox rats, tolbutamide decreased serum glucose and insulin, elevated serum glucagon and stimulated the secretion of glucagon, but not that of insulin by the pancreatic islets. In addition, tolbutamide treatment increased the glucagon response to arginine in normal, but not in hypox rats. The serum glucose response to arginine was decreased by tolbutamide treatment and by hypophysectomy and, thus, appeared independent of the glucagon rise or preexisting glucagon level. We conclude that tolbutamide treatment decreased the secretion of glucagon and insulin in normal rats and stimulated that of glucagon in hypox rats, perhaps because of the low levels of insulin in the serum and in the pancreas of the latter. Our results are compatible with the hypothesis that the pancreatic action of tolbutamide is influenced by the pituitary.  相似文献   

20.
In the perfused pancreas from normal SD rats, AD-4610 (0.01-0.1 mM) potentiated biphasic insulin secretion induced by 7.5 mM of glucose. The concentration-response curve of insulin secretion to glucose was shifted leftwards with AD-4610 (0.1 mM) without altering either the threshold concentration of glucose to induce insulin secretion or the maximal insulin response to glucose, indicating increased sensitivity of the pancreatic B-cells to glucose. On the other hand, AD-4610 was 10-fold less effective in altering insulin secretion induced by arginine and glyceraldehyde. The effect of AD-4610 on insulin secretion and glucose metabolism was compared with that of tolbutamide in vivo. AD-4610 (100 mg/kg) potentiated insulin secretion induced by an intravenous glucose load, and also accelerated glucose metabolism without altering basal insulin secretion in normal rats. On the other hand, tolbutamide (20 mg/kg) increased basal insulin secretion, but slightly decreased glucose-induced insulin secretion. In yellow KK mice with hyperglycemia, AD-4610 (10-100 mg/kg) had a dose-dependent hypoglycemic action, but tolbutamide did not. Thus, AD-4610 stimulated insulin secretion in a glucose-dependent fashion and enhanced glucose metabolism in vivo. These results suggest that AD-4610 selectively potentiates glucose-induced insulin secretion by increasing the sensitivity of pancreatic B-cells to glucose and may be useful for treating human NIDDM through a different mechanism than that of tolbutamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号