首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~ 15% are unmethylated. Five percent of CGs cluster into ~ 20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30 million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

6.
7.
8.
9.
10.
11.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

12.
13.
14.
15.
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. Here we showed that de novo DNA methylation occurred at the CpG island of ntl. The methylation started at the segmentation stage and continued after the larval stage. However, it occurred predominantly between 14 and 48 h postfertilization, which overlaps the period in which ntl expression disappears in the notochord and the tailbud. This inverse correlation, together with the methylation-associated formation of an inaccessible chromatin structure at the ntl CpG island region, suggested the involvement of the de novo methylation in ntl repression. Since no changes in methylation patterns were observed at the CpG islands of four other zebrafish genes, there must be a mechanism in zebrafish for specific methylation of the ntl CpG island.  相似文献   

16.
17.
18.
19.
We wished to determine if a partial methylation profile for a specific CpG site was stably maintained in both mammalian tissues and cultured cell lines. To accomplish this, we identified a CpG site with a partial methylation profile located upstream of the mouse adenine phosphoribosyltransferase promoter region. This site was found to be methylated at a level of approximately 25% in mouse brain, kidney, lung, and skeletal muscle tissues, at a level close to 50% in liver, and at level close to 0% in testis. These tissue-specific methylation profiles were not altered during aging. A methylation profile of approximately 25% at this CpG site was also observed in five mouse teratocarcinoma stem cell lines and one additional cultured cell line. This profile, however, was altered upon cellular differentiation, adenine phosphoribosyltransferase hemizygosity, and a loss of adenine phosphoribosyltransferase activity in some of the cultured cell lines. We conclude that partial methylation of a specific CpG site can be stably maintained both in vivo and in vitro and that a mechanism exists for its maintenance. The functional significance of a partial methylation profile remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号