共查询到20条相似文献,搜索用时 9 毫秒
1.
Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed. 相似文献
2.
Drought is a major abiotic stress factor limiting crop production. Identification of genetic factors involved in plant responses to drought stress will provide a solid foundation to improve drought resistance. Sorghum is well adapted to hot dry environments and regarded as a model for studying drought resistance among the grasses. Significant progress in genome mapping of this crop has also been made. In sorghum, rapid premature leaf death generally occurs when water is limited during the grain filling period. Premature leaf senescence, in turn, leads to charcoal rot, stalk lodging, and significant yield loss. More than 80% of commercial sorghum hybrids in the United States are grown under non-irrigated conditions and although most of them have pre-flowering drought resistance, many do not have any significant post-flowering drought resistance. Stay-green is one form of drought resistance mechanism, which gives sorghum resistance to premature senescence under soil moisture stress during the post-flowering period. Quantitative trait locus (QTL) studies with recombinant inbred lines (RILs) and near-isogenic lines (NILs) identified several genomic regions associated with resistance to pre-flowering and post-flowering drought stress. We have identified four genomic regions associated with the stay-green trait using a RIL population developed from B35 × Tx7000. These four major stay-green QTLs were consistently identified in all field trials and accounted for 53.5% of the phenotypic variance. We review the progress in mapping stay-green QTLs as a component of drought resistance in sorghum. The molecular genetic dissection of the QTLs affecting stay-green will provide further opportunities to elucidate the underlying physiological mechanisms involved in drought resistance in sorghum and other grasses. 相似文献
3.
4.
A Legionella pneumophila Peptidyl-Prolyl cis-trans Isomerase Present in Culture Supernatants Is Necessary for Optimal Growth at Low Temperatures 下载免费PDF全文
Several Legionella pneumophila proteins were highly expressed in low-temperature supernatants. One of these proteins was the peptidyl-prolyl isomerase PpiB. Mutants lacking ppiB exhibited reduced growth at 17°C. Since PpiB lacked a signal sequence and was present in 17°C supernatants of type II and type IV secretion mutants, this protein may be secreted by a novel mechanism. 相似文献
5.
Banks MK Kulakow P Schwab AP Chen Z Rathbone K 《International journal of phytoremediation》2003,5(3):225-234
Dissipation of petroleum contaminants in the rhizosphere is likely the result of enhanced microbial degradation. Plant roots may encourage rhizosphere microbial activity through exudation of nutrients and by providing channels for increased water flow and gas diffusion. Phytoremediation of crude oil in soil was examined in this study using carefully selected plant species monitored over specific plant growth stages. Four sorghum (Sorghum bicolor L.) genotypes with differing root characteristics and levels of exudation were established in a sandy loam soil contaminated with 2700 mg crude oil/kg soil. Soils were sampled at three stages of plant growth: five leaf, flowering, and maturity. All vegetated treatments were associated with higher remediation efficiency, resulting in significantly lower total petroleum hydrocarbon concentrations than unvegetated controls. A relationship between root exudation and bioremediation efficiency was not apparent for these genotypes, although the presence of all sorghum genotypes resulted in significant removal of crude oil from the impacted soil. 相似文献
6.
Microorganisms associated with the production of kunun zaki using sorghum grains were isolated and characterized. They consisted mainly of lactic acid bacteria, Lactobacillus plantarum, Leuconostoc mesenteroides, Corynebacterium, Lactococcus
lactis, Pediococcus cerevisiaeand yeast Saccharomyces cerevisiae. The organisms occurred in various numbers at different stages of production but persisted to the end of the production process. The growth of lactic acid bacteria brought about a gradual decrease of pH of the steeping medium from 6.87 to 4.78 in the final product. Although it is clear that specific microorganisms are involved in the production process, the chances of contamination seem to be unavoidable, as the process is not standardized and the processing environment is unhygienic. There is lack of precautionary measures against contamination and crude household materials are used in processing. Since the use of local household materials cannot be avoided, it is suggested that good manufacturing practices at all stages of production and application of the hazard analysis critical control point (HACCP) concept be applied to reduce the level of contamination. 相似文献
7.
8.
High Throughput BAC DNA Isolation for Physical Map Construction of Sorghum (Sorghum bicolor) 总被引:4,自引:0,他引:4
Klein Robert R. Morishige Daryl T. Klein Patricia E. Dong Jianmin Mullet John E. 《Plant Molecular Biology Reporter》1998,16(4):351-364
With the aim of constructing a physical map of sorghum, we developed a rapid, high throughput approach for isolating BAC DNA suitable for restriction endonuclease digestion fingerprinting, PCR- based STS-content mapping, and BAC-end sequencing. The system utilizes a programmable 96 channel liquid handling system and associated accessories that permit bacterial cultivation and DNA isolation in 96-well plate format. This protocol details culture conditions that optimize bacterial growth in deep-well plates and criteria for BAC DNA isolation to obtain high yields of quality BAC DNA. The system is robust, accurate, and relatively cost-effective. The BAC DNA isolation system has been tested during efforts to construct a physical map of sorghum. 相似文献
9.
Juice freshly expressed from Sorghum bicolor for making sweet sorghum syrup contained 108 microorganisms per ml. The dominant bacterium was Leuconostoc mesenteroides, followed by gram-negative rods. Lactobacilli, yeasts, and nonfecal coliform bacteria each comprised about 1% of the microbial population. Spoilage of juice, manifested by a sour odor, discoloration, and foaming, occurred between 5 and 12 h at ambient temperatures. Spoilage was correlated with a drop in pH from 4.9 to 4.5 L. mesenteroides was the dominant spoiling agent at 20°C, and Lactobacillus plantarum was the dominant spoiling agent at 32°C, as determined by pure culture studies. Juice may be stored for 14 days at 4°C if promptly refrigerated. 相似文献
10.
11.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. 相似文献
12.
Chloride transport in sheath and blade tissue and the cellular distribution of Cl- were investigated in an attempt to determine the physiological basis of the preferential accumulation of Cl- in sheaths of salt-stressed sorghum ( Sorghum bicolor L.). Import and export of 36 Cl- in leaf sheaths and blades of intact sorghum were followed over a 2 week period. X-ray microanalysis of frozen-hydrated bulk tissue samples was used to determine the accumulation of Cl- and other elements in the vacuoles of sheath and blade cells.
Sheath tissue accumulated Cl- despite a relatively high Cl- turnover rate. Chloride was shown to accumulate in most cell types of the sheath, particularly in adaxial epidermal cells. After an initial increase in the concentration of Cl- , blade tissue regulated Cl- levels within certain limits. Chloride levels in blades were greater in the abaxial and adaxial epidermal cells than in other cell types. The epidermal cells of blades accumulated Cl- to approximately the same concentration as sheath epidermal cells. The Cl- concentration in the photosynthetically active mesophyll and bundle sheath cells, however, remained low.
Thus, the partitioning of Cl- previously observed in the leaves of salinized sorghum apparently results from the ability of bundle sheath and mesophyll cells to maintain concentrations of Cl- at lower levels than do epidermal cells. In addition, the relatively large sheath parenchyma cells tend to serve as reservoirs for the storage of Cl- . 相似文献
Sheath tissue accumulated Cl
Thus, the partitioning of Cl
13.
14.
有研究表明,干旱、低温和盐等环境胁迫能够诱导LEA基因的表达。为了探索LEA基因家族在高粱响应外界刺激过程中起到的作用,本研究通过生物信息学的方法对LEA基因家族在高粱全基因组水平进行鉴定和分析,于高粱全基因组中共鉴定出35个基因家族成员,不均匀地分布于高粱8条染色体上,结合系统进化树和保守结构域分析结果,将高粱LEA基因家族成员分为7组。亲水性分析和结构无序性预测表明高粱LEA蛋白绝大多数为亲水性且结构无序。基因结构分析显示了各分组基因结构上的保守性。高粱LEA基因的启动子分析发现了一些与激素和非生物胁迫响应相关的顺式作用元件。对激素和干旱胁迫下高粱LEA基因的表达分析发现外界胁迫能够诱导部分高粱LEA基因的表达。 相似文献
15.
Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p<0.05) to salt stress treatments. Of the 118 spots, 79 were selected for tandem mass spectrometric identification, owing to their good resolution and abundance levels, and of these, 55 were positively identified. Identified proteins were divided into six functional categories including both known and novel/putative stress responsive proteins. Molecular and physiological functions of some of our proteins of interest are currently under investigation via bioinformatic and molecular biology approaches. 相似文献
16.
Fei Zhang Jialin Yu Christopher R. Johnston Yanqiu Wang Kai Zhu Feng Lu Zhipeng Zhang Jianqiu Zou 《PloS one》2015,10(10)
Osmopriming with PEG has potential to improve seed germination, seedling emergence, and establishment, especially under stress conditions. This research investigated germination performance, seedling establishment, and effects of osmopriming with PEG on physiology in sorghum seedlings and their association with post-priming stress tolerance under various soil moisture stress conditions. Results showed that seed priming increased the environmental range suitable for sorghum germination and has potential to provide more uniform and synchronous emergence. Physiologically, seed priming strengthened the antioxidant activities of APX, CAT, POD, and SOD, as well as compatible solutes including free amino acid, reducing sugar, proline, soluble sugar, and soluble protein contents. As a result, seed priming reduced lipid peroxidation and stabilized the cell membrane, resulting in increased stress tolerance under drought or excessive soil moisture environments. Overall, results suggested that seed priming with PEG was effective in improving seed germination and seedling establishment of sorghum under adverse soil moisture conditions. Osmopriming effectively strengthened the antioxidant system and increased osmotic adjustment, likely resulting in increased stress tolerance. 相似文献
17.
Tuinstra Mitchell R. Grote Edwin M. Goldsbrough Peter B. Ejeta Gebisa 《Molecular breeding : new strategies in plant improvement》1997,3(6):439-448
Drought is a serious agronomic problem and the single greatest factor contributing to crop yield loss in the world today. This problem may be alleviated by developing crops that are well adapted to dry-land environments. Sorghum (Sorghum bicolor (L.) Moench) is one of the most drought-tolerant grain crops and is an excellent crop model for evaluating mechanisms of drought tolerance. In this study, a set of 98 recombinant inbred (RI) sorghum lines was developed from a cross between two genotypes with contrasting drought reactions, TX7078 (pre-flowering-tolerant, post-flowering susceptible) and B35 (pre-flowering susceptible, post-flowering-tolerant). The RI population was characterized under drought and non-drought conditions for the inheritance of traits associated with post-flowering drought tolerance and for potentially related components of grain development. Quantitative trait loci (QTL) analysis identified 13 regions of the genome associated with one or more measures of post-flowering drought tolerance. Two QTL were identified with major effects on yield and 'staygreen under post-flowering drought. These loci were also associated with yield under fully irrigated conditions suggesting that these tolerance loci have pleiotropic effects on yield under non-drought conditions. Loci associated with rate and/or duration of grain development were also identified. QTL analysis indicated many loci that were associated with both rate and duration of grain development. High rate and short duration of grain development were generally associated with larger seed size, but only two of these loci were associated with differences in stability of performance under drought. 相似文献
18.
Prabhjot Kaur Gill Arun Dev Sharma Prabhjeet Singh Sukhdev Singh Bhullar 《Plant Growth Regulation》2003,40(2):157-162
The effect of various abiotic stresses on germination rate, growth and soluble sugar content in Sorghum bicolor (L.) Moench cv. CSH 6 seed embryos and endosperm during early germination was investigated. Under stress conditions germination, water potential and tissue water content decreased markedly. Subsequently, this reduction resulted in marked decreases in fresh weight both in embryos and endosperm. Conversely, a substantial increase in dry weight was observed. Furthermore, a considerable increase in the sugar contents in both embryo and endosperm was detected. The fructose level was always higher than glucose and sucrose in response to various stresses. However, as compared to the control the level of glucose and sucrose was higher in embryos and endosperm after stress treatments. Based upon these results a possible physiological role of sugars in the germination of sorghum seeds is discussed. 相似文献
19.
M.R.R. Coelho N.P. Carneiro I.E. Marriel L. Seldin 《Letters in applied microbiology》2009,48(5):611-617
Aims: To develop a polymerase chain reaction (PCR)-based approach for the detection of nifH gene-containing Paenibacillus in environmental samples.
Methods and Results: The primers, nifHPAENf and nifHPAENr, were designed and tested with DNA from: (i) strains of different nitrogen-fixing Paenibacillus species, (ii) strains of other nitrogen-fixing genera and (iii) rhizosphere of sorghum sown in Cerrado soil amended with either 12 or 120 kg ha−1 of nitrogen fertilizer. All nitrogen-fixing Paenibacillus strains tested and the DNA samples from rhizosphere soil were amplified when these primers were used, generating a 280 bp fragment. When the PCR products obtained from both sorghum rhizospheres were cloned and sequenced, the majority of the clones analysed could be identified as Paenibacillus durus . Moreover, a greater diversity in the nifH sequences could be observed in the rhizosphere treated with a high amount of nitrogen fertilizer.
Conclusions: Nitrogen fertilization slightly influenced the structure of the nifH gene-containing Paenibacillus community in sorghum rhizospheres cultivated in Cerrado soil.
Significance and Impact of the Study: The PCR detection method developed is adequate to assess the presence of nifH gene-containing Paenibacillus in the environment and can be used in future to determine the ecological role of this group of micro-organisms for the nitrogen input to the plants. 相似文献
Methods and Results: The primers, nifHPAENf and nifHPAENr, were designed and tested with DNA from: (i) strains of different nitrogen-fixing Paenibacillus species, (ii) strains of other nitrogen-fixing genera and (iii) rhizosphere of sorghum sown in Cerrado soil amended with either 12 or 120 kg ha
Conclusions: Nitrogen fertilization slightly influenced the structure of the nifH gene-containing Paenibacillus community in sorghum rhizospheres cultivated in Cerrado soil.
Significance and Impact of the Study: The PCR detection method developed is adequate to assess the presence of nifH gene-containing Paenibacillus in the environment and can be used in future to determine the ecological role of this group of micro-organisms for the nitrogen input to the plants. 相似文献
20.
The defence reactions of sorghum seedlings 7 days after inoculation with Fusarium thapsinum and F. proliferatum, and interactions with wounding and exposure to light were studied to determine whether responses to these fungi differed from those to abiotic stresses. In non‐wounded plants, inoculation with both fungi increased concentrations of anthocyanins and soluble phenolics and activities of peroxidase (POX), chitinase and β‐1,3‐glucanase in the roots, and increased β‐1,3‐glucanase activity in the mesocotyls. There was no effect of inoculation on phenylalanine ammonia‐lyase (PAL) activity. Wounding by itself increased anthocyanin content of mesocotyls. Wounding also had a variety of interactions with inoculation. Exposure to light had very little effect on any defence response measured. A time course experiment showed that induction of chitinase and β‐1,3‐glucanase occurred in less than 24 h after inoculation. POX activity increased 2 days after inoculation, followed by a transient increase in PAL activity. The content of anthocyanins and soluble phenolics in roots of inoculated seedlings increased gradually compared with controls over 6 days. The responses of sorghum seedlings to inoculation with F. thapsinum and F. proliferatum were similar to those found by other workers following challenge by necrotrophic pathogens and were different from those induced by wounding and exposure to light. 相似文献