首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic characterizations of the Chinese hamster ovary cell mutants resistant to the DNA polymerase inhibitors (aphidicolin, ara-A and ara-C) have been described. Resistance to all three inhibitors showed dominance among the progeny of somatic cell crosses between the wild type and mutant parents. Analysis of the segregation of the drug-resistant character among 566 hybrid progeny from somatic crosses between the wild type (aphs, ara-As, and ara-Cs) and the triple mutants (aphr, ara-Ar, ara-Cr) showed the involvement of at least three unlinked genes in controlling the expression of the resistance to different DNA polymerase inhibitors. The mutant (aphr) DNA was used to transfect aphidicolin resistance to recipient mouse Ltk- cells either directly or in combination with the plasmid pTK2 DNA. The aphidicolin resistance of the transfected cells was found to be a stable phenotype and could be used in multiple rounds of transfection, indicating the chromosomal integration of the transfecting gene.  相似文献   

2.
Minichromosome maintenance (MCM) proteins are essential components of pre-replication complexes, which limit DNA replication to once per cell cycle. MCM3 acetylating protein, MCM3AP, binds and acetylates MCM3 and inhibits cell cycle progression. In the present study, we examined inhibition of the cell cycle by MCM3AP in a cell-free system. We show here that wild type MCM3AP, but not the acetylase-deficient mutant, inhibits initiation of DNA replication, but not elongation. Both wild type and acetylase-deficient mutant MCM3AP, however, can bind to chromatin through interaction with MCM3. These results indicate that MCM3 acetylase activity of MCM3AP is required to inhibit initiation of DNA replication and that association of MCM3AP to chromatin alone is not sufficient for the inhibition. We also show that interaction between MCM3 and MCM3AP is essential for nuclear localization and chromatin binding of MCM3AP. Furthermore, the chromatin binding of MCM3AP is temporally correlated with that of endogenous MCM3 when cells were released from mitosis. Hence, MCM3AP is a potent natural inhibitor of the initiation of DNA replication whose action is mediated by interaction with MCM3.  相似文献   

3.
The ability of wild type and mutant T4 DNA polymerases to discriminate in the utilization of the base analog 2-aminopurine (2AP) and the fluorescence of 2AP were used to determine how DNA polymerases distinguish between correct and incorrect nucleotides. Because T4 DNA polymerase incorporates dTMP opposite 2AP under single-turnover conditions, it was possible to compare directly the kinetic parameters for incorporation of dTMP opposite template 2AP to the parameters for incorporation of dTMP opposite template A without the complication of enzyme dissociation. The most significant difference detected was in the K(d) for dTTP, which was 10-fold higher for incorporation of dTMP opposite template 2AP (approximately 367 microm) than for incorporation of dTMP opposite template A (approximately 31 microm). In contrast, the dTMP incorporation rate was reduced only about 2-fold from about 318 s(-1) with template A to about 165 s(-1) for template 2AP. Discrimination is due to the high selectivity in the initial nucleotide-binding step. T4 DNA polymerase binding to DNA with 2AP in the template position induces formation of a nucleotide binding pocket that is preshaped to bind dTTP and to exclude other nucleotides. If nucleotide binding is hindered, initiation of the proofreading pathway acts as an error avoidance mechanism to prevent incorporation of incorrect nucleotides.  相似文献   

4.
DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE). The error rates were 4.4, 8.9, and 2.4 x 10(-5) errors/bp for modified T7, Taq, and Tli polymerase, respectively. Reducing the nucleotide triphosphate concentration for Tli polymerase during PCR did not alter the fidelity. The ability of DGGE to detect a mutant present at several percent in a wild type population is related to the polymerase fidelity. To examine the sensitivity of mutant detection, human genomic DNA containing a 1% fraction of a known base pair substitution mutant was PCR-amplified with the three enzymes using primers that flank the mutant sequence. The PCR products were analyzed by DGGE. The signal from the mutant present at 1% was visible in the samples amplified with modified T7 and Tli polymerase, but the higher error rate of Taq polymerase did not permit visualization of the signal in DNA amplified with Taq polymerase.  相似文献   

5.
6.
A novel DNA polymerase induced by Bacillus subtilis phage phi 29.   总被引:4,自引:2,他引:2       下载免费PDF全文
K Watabe  J Ito 《Nucleic acids research》1983,11(23):8333-8342
A novel DNA polymerase induced by Bacillus subtilis bacteriophage phi 29 has been identified. This polymerase can be separated from host DNA polymerase, by fractionation of extracts prepared from phage infected cells, using phosphocellulose chromatography. The isolated polymerase prefers poly(dA)oligo(dT) as template. The DNA polymerase isolated from the cells infected with a gene 2 temperature sensitive mutant (ts2) showed greater heat-lability than that induced by wild type phi 29. The ts2 DNA polymerase was also thermolabile for its activity in the formation of a covalent complex between phi 29 terminal protein and dAMP, the initiation step of phi 29 DNA replication. These findings indicate that gene 2 is the structural gene for a phi 29 DNA polymerase required for the complex formation step of DNA initiation.  相似文献   

7.
Most potent mutators heretofore detected in Escherichia coli are associated with defects in epsilon subunit of DNA polymerase III, encoded by the dnaQ gene. To elucidate the role of the alpha subunit, the catalytic subunit of the polymerase, in maintaining the high fidelity of DNA replication, we isolated a mutator mutant, the mutation (dnaE173) of which resides on the dnaE gene, encoding the alpha subunit. The dnaE173 mutant was unable to grow in salt-free L broth at temperatures exceeding 44.5 degrees C and exhibited an increased frequency of spontaneous mutations, 1,000 to 10,000-fold the wild type level, at permissive temperatures. The mutator effect of dnaE173 mutation is dominant over the wild type allele. These phenotypes are caused by a single base substitution, resulting in one amino acid change, Glu612 (GAA)----Lys(AAA), in the alpha subunit molecule. DNA polymerase III purified from the dnaE173 mutant contained both alpha and epsilon subunits, in a normal molar ratio. We found no differences between wild type and mutant polymerases in the Vmax, thermolabilities, and salt sensitivities. However, the apparent Km for the substrate nucleotide of the mutant polymerase was 1/6 of that determined with the wild type polymerase. Although the mutant polymerase retained a normal level of 3'----5' exonuclease activity, the proofreading capacity determined by "turnover assay" was significantly lower in the mutant polymerase, as compared with findings in the normal enzyme. It seems likely that the enhanced mutability in the dnaE173 strain results from, at least in part, a defect in the editing function of DNA polymerase III, and further suggests that a portion of the alpha subunit in which the amino acid change resides may be important for the proper setting of the two subunits at the replication fork so as to facilitate efficient editing during the DNA replication.  相似文献   

8.
Summary We have found that the cells possessing the polA6 mutation affecting DNA polymerase I are unable to accept another mutation (uvr502) leading to UV-sensitivity. The introduction of the polA12 mutation determining the synthesis of a temperature sensitive DNA polymerase I into the uvr502 mutant results in the temperature sensitivity of colony forming ability of the double mutant. These data show that the uvr502 derivatives lacking DNA polymerase I are inviable. Reversions to temperature resistance in the population of the double mutant uvr502 polA12 may occur because of reverse mutations at one of the mutated sites or because of mutations suppressing DNA polymerase I deficiency but not UV- or MMS-sensitivity of revertants. DNA and protein synthesis in uvr502 polA12 cells continues after a shift to 45°C with rates almost indistinguishable from those in single mutants or wild type cells. No differences in DNA degradation were observed during incubation of single and double mutants at 45°C. The single strand molecular weight distribution of parent DNA from the double mutant as well as that from wild type cells is not affected by the shift to 45°C and 3 hours incubation at this temperature. We suggest that DNA polymerase I and/or the product altered by the uvr502 mutation are required for some step(s) of discontinuous DNA replication nonessential for the formation of acid insoluble DNA. The DNA polymerase I and the uvr gene product seem to be able to substitute for each other in accomplishing this process.  相似文献   

9.
The hybrid protein consisting of Tte DNA polymerase fragment and mutant Taq DNA polymerase (F667Y) fragment in the ratio 20 : 1 was constructed. Affinity of the modified enzyme (substitutions F669Y, V667I, and S692Q) to ddNTP was two orders higher than that of the wild type enzyme. The modified enzyme was used for sequencing DNA fragment with total deoxyguanosine and deoxycytidine content of 68%. In the polymerase chain reaction, the modified enzyme exhibits properties typical of the wild type Tte DNA polymerase.  相似文献   

10.
A cDNA encoding a human ortholog of mouse DNA helicase B, which may play a role in DNA replication, has been cloned and expressed as a recombinant protein. The predicted human DNA helicase B (HDHB) protein contains conserved helicase motifs (superfamily 1) that are strikingly similar to those of bacterial recD and T4 dda proteins. The HDHB gene is expressed at low levels in liver, spleen, kidney, and brain and at higher levels in testis and thymus. Purified recombinant HDHB hydrolyzed ATP and dATP in the presence of single-stranded DNA, displayed robust 5'-3' DNA helicase activity, and interacted physically and functionally with DNA polymerase alpha-primase. HDHB proteins with mutations in the Walker A or B motif lacked ATPase and helicase activity but retained the ability to interact with DNA polymerase alpha-primase, suggesting that the mutants might be dominant over endogenous HDHB in human cells. When purified HDHB protein was microinjected into the nucleus of cells in early G(1), the mutant proteins inhibited DNA synthesis, whereas the wild type protein had no effect. Injection of wild type or mutant protein into cells at G(1)/S did not prevent DNA synthesis. The results suggest that HDHB function is required for S phase entry.  相似文献   

11.
The fidelity with which wild type T4 DNA polymerase copies phi X174 amber 3 plus strand DNA at position 587 in vitro has been measured. Synthesis is initiated by hybridizing to the template a HaeIII restriction fragment whose 3'-OH terminus is 83 nucleotides from the amber 3 site. Based on gel electrophoresis of product DNA molecules and genetic marker rescue data, T4 DNA polymerase copies significantly beyond the mutant site. Transfection analysis shows that the A X T leads to G X C mutation at position 587 occurs 10- to 100-fold less frequently with T4 DNA polymerase than with E. coli DNA polymerase I. The aberrant incorporation of cytosine opposite adenine at position 587 by the T4 polymerase alone is occurring at a frequency not greater than about 10(-7) which, for this particular locus, may be similar to the fidelity exhibited by the T4 accessory proteins plus the polymerase comprising the replication complex. A comparison of the accuracy of mutator L56 and antimutator L141 T4 DNA polymerases relative to wild type shows at most a 2- to 4-fold decrease and increase, respectively, in fidelity. When compared to 10- to 1000-fold effects on mutation frequencies that these same mutant alleles have in vivo, these results suggest that the wide range in expression of mutator and antimutator phenotypes in vivo may be dependent on an abnormal interaction of the aberrant DNA polymerases with other protein components of the replication complex.  相似文献   

12.
Although DNA replication has been thought to play an important role in the silencing of mating type loci in Saccharomyces cerevisiae, recent studies indicate that silencing can be decoupled from replication. In Schizosaccharomyces pombe, mating type silencing is brought about by the trans-acting proteins, namely Swi6, Clr1-Clr4, and Rhp6, in cooperation with the cis-acting silencers. The latter contain an autonomous replication sequence, suggesting that DNA replication may be critical for silencing in S. pombe. To investigate the connection between DNA replication and silencing in S. pombe, we analyzed several temperature-sensitive mutants of DNA polymerase alpha. We find that one such mutant, swi7H4, exhibits silencing defects at mat, centromere, and telomere loci. This effect is independent of the checkpoint and replication defects of the mutant. Interestingly, the extent of the silencing defect in the swi7H4 mutant at the silent mat2 locus is further enhanced in absence of the cis-acting, centromere-proximal silencer. The chromodomain protein Swi6, which is required for silencing and is localized to mat and other heterochromatin loci, interacts with DNA polymerase alpha in vivo and in vitro in wild type cells. However, it does not interact with the mutant pol alpha and is delocalized away from the silent mat loci in the mutant. Our results demonstrate a role of DNA polymerase alpha in the establishment of silencing. We propose a recruitment model for the coupling of DNA replication with the establishment of silencing by the chromodomain protein Swi6, which may be applicable to higher eukaryotes.  相似文献   

13.
Li SX  Vaccaro JA  Sweasy JB 《Biochemistry》1999,38(15):4800-4808
DNA polymerase beta is a small monomeric polymerase that participates in base excision repair and meiosis [Sobol, R., et al. (1996) Nature 379, 183-186; Plug, A., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1327-1331]. A DNA polymerase beta mutator mutant, F272L, was identified by an in vivo genetic screen [Washington, S., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1321-1326]. Residue 272 is located within the deoxynucleoside triphosphate (dNTP) binding pocket of DNA polymerase beta according to the known DNA polymerase beta crystal structures [Pelletier, H., et al. (1994) Science 264, 1891-1893; Sawaya, M., et al. (1997) Biochemistry 36, 11205-11215]. The F272L mutant produces errors at a frequency 10-fold higher than that of wild type in vivo and in the in vitro HSV-tk gap-filling assay. F272L shows an increase in the frequency of both base substitution mutations and frameshift mutations. Single-enzyme turnover studies of misincorporation by wild type and F272L DNA polymerase beta demonstrate that there is a 4-fold decrease in fidelity of the mutant as compared to that of the wild type enzyme for a G:A mismatch. The decreased fidelity is due primarily to decreased discrimination between the correct and incorrect dNTP during ground-state binding. These results suggest that the phenylalanine 272 residue is critical for maintaining fidelity during the binding of the dNTP.  相似文献   

14.
The impact of human papilloma virus (HPV16) E7 proteins and retinoblastoma (RB) antisense oligonucleotides upon mitogen-activated protein kinase (MAPK)-mediated inhibition of DNA synthesis via p21(Cip-1/WAF1/MDA6) (p21) was determined in primary hepatocytes. Prolonged activation of the MAPK pathway in p21(+/+) or p21(-/-) hepatocytes caused a large decrease and increase, respectively, in DNA synthesis. Either transfection with RB antisense oligonucleotides, expression of wild type E7, or RB binding mutant E7 (C24S) proteins increased p21 levels and reduced DNA synthesis in p21(+/+) hepatocytes. RB antisense oligonucleotides and E7 proteins increased apoptosis in p21(+/+), but not p21(-/-), hepatocytes. Expression of wild type E7 increased DNA synthesis above control levels in p21(-/-) cells, which was additive with prolonged MAPK activation. In contrast, expression of mutant E7 did not alter DNA synthesis above control levels in p21(-/-) cells and was supra-additive with prolonged MAPK activation. Antisense ablation of RB in p21(-/-) hepatocytes had a weak stimulatory effect upon DNA synthesis itself but enhanced the capacity of mutant E7 protein to stimulate DNA synthesis to the same level observed using wild type E7. The ability of prolonged MAPK activation to stimulate DNA synthesis in the presence of mutant E7 and antisense RB was additive. Collectively, the present data demonstrate that loss of RB function together with loss of p21 function plays an important role in the E7- and MAPK-dependent modulation of apoptosis and DNA synthesis in primary hepatocytes.  相似文献   

15.
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.  相似文献   

16.
D Billen 《Radiation research》1987,111(2):354-360
When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed.  相似文献   

17.
Zhao B  Xie Z  Shen H  Wang Z 《Nucleic acids research》2004,32(13):3984-3994
Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase η (Polη) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as −1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Polη (rad30), Rev1, Polζ (rev3), and both Polη and Polζ, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polζ, but significant A insertion was still detected in these mutant cells. While purified yeast Polα effectively inserted an A opposite the AP site in vitro, purified yeast Polδ was much less effective in A insertion opposite the lesion due to its 3′→5′ proofreading exonuclease activity. Purified yeast Polη performed extension synthesis from the primer 3′ A opposite the lesion. These results show that Polη is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Polη is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains.  相似文献   

18.
A transformation-deficient strain of Haemophilus influenzae, lacking adenosine 5'-triphosphate-dependent deoxyribonuclease activity, was isolated by selection for sensitivity to mitomycin. The mutant, designated JK57, possibily showed a moderate sensitivity to ultraviolet (UV) irradiation and treatment with methyl methane sulfonate. Contrary to the wild type, the mutant degraded chromosomal deoxyribonucleic acid (DNA) to some extent. However, after UV irradiation to the mutant degraded considerably less DNA than the wild type and the TD24 mutant of H. influenzae, the latter being equivalent to a recA mutant of Escherichia coli. A TD2457 double mutant, constructed by transferring the TD24 mutation into the JK57 strain, was as sensitive to deleterious agents and as deficient in transformation as the TD24 single mutant; in the double mutant, however, after UV irradiation chromosomal DNA was degraded to the same extent as in the JK57 mutant. The number of transformants per unit of radioactive donor DNA taken up by JK57 recipient cells was approximately 10-fold smaller than in the wild type. Presynaptically, the fate of donor DNA in the adenosine 5'-triphosphate-dependent deoxyribonuclease-deficient mutants was not different from that in the wild type. In contrast to TD24 and the TD2457 double mutant, in the JK57 mutant, recombinant-type activities (molecules carrying both the donor and recipient markers) were formed almost as well as in the wild type. After integration into the JK57 recipient genome, the rate of replication of the donor marker was equal to that of the recipient marker during a number of generations, which suggests that the donor DNA is normally integrated into the JK57 chromosome. It is suggested that transformed JK57 cells pass with a high frequency into a type of cells that can replicate their chromosomes many times but have lost the ability to form visible colonies after plating.  相似文献   

19.
Apurinic/apyrimidinic endonuclease (AP endo) is a key enzyme in the repair of oxidatively damaged DNA. Using single-turnover conditions, we recently described substrate binding parameters for wild type human AP endo. In this study, we utilized four enzyme mutants, D283A, D308A, D283A/D308A, and H309N, and assayed them under steady state and single-turnover conditions. The turnover number of the single aspartate mutants was decreased 10-30-fold in comparison to that of the wild type. The decrease in the turnover number was accompanied by a 17- and 50-fold decrease in the forward rate constant (kon) for substrate binding by D308A and D283A, respectively. The dissociation rate constant for substrate (koff) was unchanged for the D308A mutant but was 10 times faster for the D283A mutant than for the wild type. The apparent Km values for both of the single aspartate mutants were about equal to their respective KD values. To account for the kinetic behavior of the D308A mutant, it was necessary to insert a conformational change into the kinetic scheme. In contrast to the single aspartate mutants, the turnover number for the double mutant was 500-fold lower than that of the wild type, its apparent Km was 2.5-fold higher, and binding to substrate was weak. Mutation of His309 caused the greatest decrease in activity, resulting in a turnover number that was more than 30000-fold lower than that of the wild type and an apparent Km that was 13-fold higher, supporting the notion that His309 is intimately involved in catalysis. Molecular dynamics simulation techniques suggested that conversion of either aspartate to alanine resulted in major shifts in the spatial localization of key amino acids. Despite the fact that the two aspartates flank His309, the movement they engendered was distinct, consistent with the differences in catalytic behavior. We suggest that the conformation of the active site is largely maintained by the two aspartates, which enable efficient binding and cleavage of abasic site-containing DNA.  相似文献   

20.
We have used a glucocorticoid receptor cDNA isolated from a mouse lymphoma cell line to characterize receptor mRNA and genomic sequences present in wild type and mutant rat hepatoma (HTC) and mouse thymoma (S49 and WEHI7) cells. Wild type rat and mouse cell lines contain two receptor mRNAs, 5 and 7 kilobase pairs (kb) in length, which differ in the length of their 3'-untranslated regions. Levels of receptor mRNA present in mutant HTC, WEHI7, and S49 cells of the r- (receptorless) phenotype are decreased compared to wild type cells. This decreased level of receptor mRNA parallels the decreased level of total immunoreactive receptor protein found in these cells. S49 nt- (nuclear transfer minus) cells contain receptor mRNA levels which parallel their hormone binding and immunoreactive receptor levels. Cells of the r- and nt- phenotype contain no detectable deletions or rearrangements of the receptor gene. We conclude that r- cells have lesions which affect the expression of receptor mRNA. Surprisingly, HTC cells of the r- phenotype differ from WEHI7 and S49 r- cells in that HTC r- cells contain a lower level of receptor DNA than does their parental wild type cell line. Although these cells may contain multiple lesions, it appears that loss of receptor genomic sequences is responsible, in part, for the phenotype of the HTC r- cells. The S49 nti (nuclear transfer increase) cells produce glucocorticoid receptors of molecular weights 40,000 and 94,000. These cells produce, in addition to the wild type 5- and 7-kb receptor mRNAs, two other receptor messages 5.5 and 3.5 kb in length. RNA blot analysis using various portions of our receptor cDNA indicates that these are 5' truncated messages and suggests that the 40-kDa nti receptor is truncated at its NH2-terminal end. These data also indicate that the hormone and DNA-binding regions of the receptor are located in the COOH-terminal half of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号