首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that genetically susceptible mice can be rendered resistant to the induction of experimental autoimmune thyroiditis (EAT) by pretreatment with deaggregated mouse thyroglobulin (dMTg). This resistance is mediated by CD4+ suppressor T cells (Ts) which suppress the afferent/inductive phase of EAT. Recent work has also shown that resistance to EAT can be achieved by vaccination with irradiated spleen cells previously primed in vivo with MTg and cultured in vitro with MTg (gamma SC). The gamma SC-induced resistance also inhibits the afferent phase of EAT but is mediated by both CD4+ and CD8+ Ts. To determine if dMTg- and gamma SC-induced suppression can cooperate to prevent EAT, we pretreated mice with suboptimal doses of dMTg and gamma SC before challenge with MTg and adjuvant. Mice receiving dMTg or gamma SC only showed suppressed in vitro response to MTg, but the development of thyroid lesions was unaltered. However, mice given one or two subtolerogenic doses of dMTg followed by gamma SC not only showed suppressed in vitro response to MTg, but also little or no thyroiditis, indicating cooperation between these two mechanisms. The cooperation was not reciprocal since reversing the order, giving gamma SC first followed by dMTg, was not effective in suppressing EAT. Thus, suppressor mechanisms activated by pretreatment with dMTg and gamma SC can act synergistically to suppress EAT induction; the two mechanisms may cooperate in vivo to maintain self-tolerance provided that MTg-specific CD4+ Ts are initially activated.  相似文献   

2.
Deaggregated mouse thyroglobulin (dMTg) induces tolerance to experimental autoimmune thyroiditis (EAT), a Th1-cell-mediated disease. To test whether IL-12, a potent activator of Th1 cells, can overcome tolerance induction, different doses of IL-12 were given to CBA/J mice during the critical interval of 2--3 days after dMTg administration. After challenge with MTg/LPS, dMTg/IL-12-pretreated mice showed more extensive thyroiditis than immunized controls, but comparable levels of anti-MTg and T cell proliferation. Without challenge, few MTg antibodies were produced. In contrast, pretreatment with dMTg/poly A:U or dMTg/IL-1, two other T cell activators which also interfere with tolerance induction, induced antibodies before challenge, but not more severe thyroiditis. Mice pretreated with IL-12 without dMTg developed thyroiditis comparable to immunized controls, but less severe thyroiditis than dMTg/IL-12-pretreated mice. Clearly, IL-12 not only blocked tolerance induction, but also primed antigen-specific T cells during the tolerogenic period of dMTg pretreatment, resulting in stronger thyroiditis than immunization only. Neither treatment with anti-IFN-gamma nor the use of IFN-gamma knockout mice altered the capacity of IL-12 to prevent tolerance induction. However, both anti-CD28 and anti-CD40L antibodies diminished the priming effect by dMTg/IL-12. The mechanisms of IL-12 action include priming of MTg-specific T cells and the involvement of T cell costimulatory molecules.  相似文献   

3.
We established the phenotype of T splenocytes (Ts) from Igha/a BALB/c mice sensitized against B splenocytes from the Ighb/b CB20 congenic mice that induce Igh-1b (IgG2a of the Ighb haplotype) suppression. This was achieved by studying the action of anti-T cell subset mAb on the capacity of Ts to induce this chronic allotypic suppression in Igha/b (BALB/c x CB20)F1 mice. The Ts were treated with cytotoxic anti-mouse CD4 or anti-mouse CD8 rat mAb in vitro before their injection into the Igha/b newborns or in vivo after their injection into the Igha/b newborns. Exposure to either anti-CD8 or anti-CD4 mAb in vitro or in vivo leads to loss of the capacity of Ts to induce Igh-1b allotypic suppression. Mixing CD4+-cell-depleted Ts and CD8+-cell-depleted Ts preparations restored the capacity of the cells to induce Igh-1b suppression. Thus, both CD4+ CD8- Ts and CD4- CD8+ Ts are required for the induction of this allotypic suppression. Bone marrow cells and B splenocytes from Igh-1b-suppressed adult Igha/b mice were shown to be able to durably express Igh-1b when transferred into irradiated Igha/a BALB/c hosts whereas whole spleen cells from such donors failed to do it. Abrogation of Igh-1b suppression by in vivo anti-CD8 mAb treatment was achieved in adult Igha/b heterozygotes but with a lower efficiency than in adult Ighb/b homozygotes, all being chronically Igh-1b suppressed. The CD4- CD8+ cell population essential for maintaining this suppression is resistant to in vivo 600 rad irradiation and seems to be slightly inhibited by in vivo administration of free Igh-1b.  相似文献   

4.
Experimental autoimmune thyroiditis (EAT) can be induced in mice after the transfer of mouse thyroglobulin (MTg)-sensitized donor spleen cells that have been activated in vitro with MTg. CD4+ T cells are required for the transfer of EAT in this model. Because CD4+ T cells produce various lymphokines, such as IFN-gamma, that may be involved in the activation or regulation of the immune response to MTg and the development of EAT, the present study was undertaken to determine whether a neutralizing mAb to IFN-gamma could modulate the induction or expression of EAT. The anti-IFN-gamma mAb XMG-1.2 had no effect on sensitization of donor cells. However, addition of XMG-1.2 mAb during in vitro activation of MTg-primed spleen cells resulted in more severe EAT in recipient mice. The thyroid lesions in recipients of cells cultured with MTg and XMG-1.2 mAb also exhibited granulomatous changes, which differed qualitatively from the predominantly lymphocytic cell infiltrates in recipients of cells cultured with MTg alone. Recipients of MTg-activated spleen cells also developed severe granulomatous EAT when they were given injections of XMG-1.2 mAb. The effects of XMG-1.2 could be neutralized by IFN-gamma. Recipients of cells cultured in the presence of XMG-1.2 mAb had augmented autoantibody responses, although there were no apparent differences in the IgG subclass distribution of the anti-MTg autoantibody responses. These studies suggest that neutralization of endogenous IFN-gamma results in increased activity of cells capable of inducing granulomatous EAT in mice.  相似文献   

5.
We recently described a novel H2E class II-transgenic model (A(-)E(+)) of experimental autoimmune thyroiditis (EAT) that permits disease induction with heterologous thyroglobulin (Tg), but unlike conventional susceptible strains, precludes self-reactivity to autologous mouse Tg. In transgenic E(+)B10 (A(+)E(+)) mice, the presence of endogenous H2A genes is protective against H2E-mediated thyroiditis, inhibiting EAT development. The suppressive effect of H2A genes on H2E-mediated thyroiditis mirrors previous reports of H2E suppression on H2A-mediated autoimmune diseases, including EAT. The mechanism of the reciprocal-suppressive effect between class II genes is unclear, although the involvement of regulatory T cells has been proposed. We have recently reported that CD4(+)CD25(+) regulatory T cells mediate peripheral tolerance induced with mouse Tg in CBA mice. To determine whether these cells play a role in our E(+)-transgenic model, we first confirmed the existence of CD4(+)CD25(+) T cells regulating thyroiditis in E(+)B10.Ab(0) (A(-)E(+)) and B10 (A(+)E(-)) mice by i.v. administration of CD25 mAb before EAT induction. The depletion of CD4(+)CD25(+) T cells enhanced thyroiditis induction in the context of either H2E or H2A. Moreover, reconstitution of CD4(+)CD25(+) T cells from naive B10 mice restored resistance to EAT. E(+)B10 (A(+)E(+)) mice were also depleted of CD4(+)CD25(+) T cells before the challenge to determine their role in thyroiditis in the presence of both H2A and H2E genes. Depletion of CD4(+)CD25(+) regulatory T cells offset the suppression of H2E-mediated thyroiditis by H2A. Thus, these regulatory T cells may be involved in the reciprocal-suppressive effect between class II genes.  相似文献   

6.
Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.  相似文献   

7.
Experimental autoimmune thyroiditis (EAT), a model for Hashimoto's thyroiditis, is a T cell-mediated disease inducible with mouse thyroglobulin (mTg). Pretreatment with mTg, however, can induce CD4+ T cell-mediated tolerance to EAT. We demonstrate that CD4+CD25+ regulatory cells are critical for the tolerance induction, as in vivo depletion of CD25+ cells abrogated established tolerance, and CD4+CD25+ cells from tolerized mice suppressed mTg-responsive cells in vitro. Importantly, administration of an agonistic CD137 monoclonal antibody (mAb) inhibited tolerance development, and the mediation of established tolerance. CD137 mAb also inhibited the suppression of mTg-responsive cells by CD4+CD25+ cells in vitro. Signaling through CD137 likely resulted in enhancement of the responding inflammatory T cells, as anti-CD137 did not enable CD4+CD25+ T cells to proliferate in response to mTg in vitro.  相似文献   

8.
Antigenic modulation was defined as the down-regulation of a cell surface antigen expression induced by exposure to specific antibody. We investigated the modulation of CD4 surface expression in human peripheral blood lymphocytes incubated in vitro with anti-CD4 monoclonal antibodies (mAbs). Modulation of surface CD4 was achieved at 37 degrees C, but not at 4 degrees C, with five different murine anti-CD4 mAbs of IgG1 and IgG2a subclasses, with different epitope specificities. Modulation was dose dependent with a maximum at nonsaturating mAb concentration. It was reversible upon culture in mAb-free medium. It was accelerated and amplified in the presence of monocytes or after cross-linking of anti-CD4 mAbs. It could be induced with solid phase anti-CD4 mAbs, but not with soluble F(ab')2 fragments. Its magnitude was identical on all CD4+ lymphocytes. It was associated with a moderate down-regulation of CD2 and CD3 but not of CD8 and HLA class I surface expression. Modulation was slightly augmented by addition of inhibitors of the endosome/lysosome pathway but not by protein synthesis inhibitors. The anti-CD4 mAb initially bound to cell surface was no longer detectable after 24 hr of culture. Most of surface CD4 proteins complexed with antibody were rapidly internalized and transiently replaced by CD4 from an intracytoplasmic pool and then no longer were expressed. CD4 mRNA was moderately decreased in cells incubated with anti-CD4 mAb while beta-actin and beta 2-microglobulin mRNAs remained at stable levels. It was concluded that down-regulation of CD4 surface expression induced by anti-CD4 mAb concerned only a part of CD4 molecules and was associated with a decreased synthesis. The delay required to achieve maximal modulation is likely to reflect exhaustion of the intracytoplasmic recycling pool of CD4 molecules.  相似文献   

9.
Previous studies of the immune response of C57BL/6 mice to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten determined that challenge with antigenic forms of hapten induces both immunity and suppression. The anti-NP plaque-forming cell response can be down regulated by an Ag-induced cascade consisting of three suppressor T cell subsets. These three populations, termed Ts1, Ts2, and Ts3 have been characterized to have inducer, transducer and effector functions, respectively. Although the functions of each of these subsets have been examined in vivo, the cellular requirements for in vitro Ts induction have only been investigated for the Ts3 population. The present study characterizes the cellular events that lead to the induction of the Ts2, suppressor transducer population. Culture of naive C57BL/6 spleen cells with Ts1-derived suppressor factor in the absence of exogenous Ag leads to the generation of Ts2 cells that mediate Ag-specific suppression of NP plaque-forming cell responses. Phenotypic analyses demonstrate that a CD3+, CD4-, CD5+, CD8+, and I-J+ precursor population is stimulated by TsF1 to become mature Ts2 cells that express CD3, CD8, and I-J but not CD5. Although previous studies have reported an essential role for B cells in the induction of other Ts populations, depletion of B cells from Ts2 induction cultures had no effect on Ts2 generation. Despite the absence of B cells in these cultures, the mature Ts2 cells were functionally IgH restricted. Studies with IgH congenic B.C-8 mice suggest that this restriction specificity was imposed by the idiotype-related determinants expressed on the TsF1, not the T cell genotype.  相似文献   

10.
Experimental autoimmune thyroiditis (EAT) can be induced in susceptible strains of mice by injection of mouse thyroglobulin (MTg) and adjuvant. Lymphocytes from immunized mice develop a proliferative response to MTg which generally correlates with the development of EAT. We utilize a cell transfer system wherein spleen cells from CBA/J mice primed with MTg and lipopolysaccharide (LPS) in vivo are activated by culture with MTg in vitro to transfer EAT to naive recipients. In vivo priming of CBA/J mice is required to develop an antigen specific proliferative response to MTg. This response is optimal between 48 and 90 hr of culture at an MTg concentration of 125-250 micrograms/ml. The correlation between proliferation and transfer of EAT is not absolute as primed Balb/c X CBA/J F1 and AKR lymphocytes do not proliferate detectably in response to MTg but can be activated to transfer EAT; primed Balb/c lymphocytes neither proliferate nor transfer EAT. Proliferation per se is not sufficient to activate cells to transfer EAT as culture with nonspecific mitogens is not effective in activating primed CBA/J spleen cells to transfer EAT. However, lymphoblasts generated during in vitro culture of primed CBA/J spleen cells with MTg are responsible for transfer of EAT; small lymphocytes are ineffective. We conclude that antigen specific proliferation in response to MTg is essential in activating lymphocytes in vitro to transfer EAT.  相似文献   

11.
The effects of mAb therapy to CD4 or CD8 on induction of unresponsiveness to Heymann's nephritis by preimmunization with renal tubular antigen in IFA. Anti-CD4 mAbs (MRC Ox35) given for 2 weeks after RTA/IFA completely prevented the induction of resistance to HN, all rats developing proteinuria as well as high titers of autoantibody and Ig and C deposits in glomeruli. Anti-CD8 mAbs (MRC Ox8) did not prevent induction of unresponsiveness, even though it totally depleted CD8+ cells. In control rats not preimmunized with RTA/IFA, mAb therapy did not suppress disease induction, but in the case of anti-CD4 therapy enhanced the severity of disease. Persistent depletion of T cell subsets or complement components did not explain the effects of mAb therapy. These studies suggest that CD4+ cells are critical for the induction of unresponsiveness to HN and that therapy with mAb to CD4 can prevent induction of tolerance to an antigen, which has implications for its use in the induction of tolerance.  相似文献   

12.
Previous studies have shown that T cells from mice genetically susceptible to experimental autoimmune thyroiditis (EAT) recognize determinants shared between mouse thyroglobulin (Tg) and heterologous Tgs. Some shared determinants are thyroiditogenic; lymphocytes from mice immunized with mouse Tg (MTg) or human Tg (HTg) and reciprocally restimulated in vitro with either Tg can transfer EAT. Studies on the mechanisms of self-tolerance have shown that pretreatment with soluble MTg suppresses in vitro proliferation to MTg and EAT induction with MTg. To determine the role of share epitopes in maintaining tolerance, mice were pretreated with soluble HTg and immunized with HTg or MTg and adjuvant. Cells from HTg-pretreated. HTg-immunized mice showed suppressed in vitro proliferative response to HTg. Following MTg immunization, the cells showed suppressed in vitro response to MTg. However, in contrast to MTg pretreatment, the subsequent development of EAT in vivo was unaltered in severity following HTg pretreatment. Thus, determinants shared between HTg and MTg can induce suppression of in vitro responses to HTg and MTg, but not inhibit the onset of thyroiditis, suggesting that T cells recognizing MTg-unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique and shared epitopes on MTg are essential for the overall maintenance of self-tolerance.  相似文献   

13.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

14.
Although the role of CD4(+) T regulatory cells (Treg) in transplantation tolerance has been established, putative mechanisms of Treg induction and function in vivo remain unclear. TLR4 signaling has been implicated in the regulation of CD4(+)CD25(+) Treg functions recently. In this study, we first examined the role of recipient TLR4 in the acquisition of operational CD4(+) Treg following CD154 blockade in a murine cardiac transplant model. Then, we determined whether TLR4 activation in allograft tolerant recipients would reverse alloimmune suppression mediated by CD4(+) Treg. We document that donor-specific immune tolerance was readily induced in TLR4-deficient recipients by a single dose of anti-CD154 mAb, similar to wild-type counterparts. The function and phenotype of CD4(+) Treg in both wild-type and TLR4 knockout long-term hosts was demonstrated by a series of depletion experiments examining their ability to suppress the rejection of secondary donor-type test skin grafts and to inhibit alloreactive CD8(+) T cell activation in vivo. Furthermore, TLR4 activation in tolerant recipients following exogenous LPS infusion in conjunction with donor-type skin graft challenge, failed to break Treg-mediated immune suppression. In conclusion, our data reveals a distinctive property of CD4(+) Treg in tolerant allograft recipients, whose induction and function are independent of TLR4 signaling.  相似文献   

15.
In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis. The data suggest that UV-exposure modulates cutaneous APC activity in humans, as in mice, such that the dominant immune response is tilted toward suppression. These mechanisms in normal individuals may function to dampen responses to UV-induced endogenous Ag that are pathogenic in autoimmune disorders. However, these mechanisms might also facilitate the growth of UV-induced skin cancers.  相似文献   

16.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

17.
Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.  相似文献   

18.
Induction of oral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases, including rheumatoid arthritis (RA). Oral administration of type II collagen (CII) has been proven to improve signs and symptoms in RA patients without troublesome toxicity. To investigate the mechanism of immune suppression mediated by orally administered antigen, we examined changes in serum IgG subtypes and T-cell proliferative responses to CII, and generation of IL-10-producing CD4+CD25+ T-cell subsets in an animal model of collagen-induced arthritis (CIA). We found that joint inflammation in CIA mice peaked at 5 weeks after primary immunization with CII, which was significantly less in mice tolerized by repeated oral feeding of CII before CIA induction. Mice that had been fed with CII also exhibited increased serum IgG1 and decreased serum IgG2a as compared with nontolerized CIA animals. The T-cell proliferative response to CII was suppressed in lymph nodes of tolerized mice also. Production of IL-10 and of transforming growth factor-beta from mononuclear lymphocytes was increased in the tolerized animals, and CD4+ T cells isolated from tolerized mice did not respond with induction of IFN-gamma when stimulated in vitro with CII. We also observed greater induction of IL-10-producing CD4+CD25+ subsets among CII-stimulated splenic T cells from tolerized mice. These data suggest that when these IL-10-producing CD4+CD25+ T cells encounter CII antigen in affected joints they become activated to exert an anti-inflammatory effect.  相似文献   

19.
Spleen cells from CBA/J or SJL mice sensitized with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) could be activated in vitro with MTg to transfer experimental autoimmune thyroiditis (EAT) to normal syngeneic recipients. EAT induced by these transferred cells was similar in incidence and severity to EAT induced by active immunization of mice with MTg and adjuvant and cells from EAT-resistant Balb/c mice could not be activated to induce EAT. The specific antigen MTg was required both for initial sensitization of the mice and for activation of spleen cells in vitro. The cells that were active in transferring EAT to mice were shown to be T cells. Removal of B cells from the cultured spleen cells had no effect on the ability of the cells to induce EAT.  相似文献   

20.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号