首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wolf spider, Schizocosa ocreata (Hentz), varies foraging patch residence time in the presence of different sensory cues from prey, even without food rewards. This study examines the influence and interaction of hunger state, age and sex on the use of different types of sensory information to determine foraging patch sampling duration. In a series of two-chambered artificial foraging patches, I tested 26 S. ocreata once as immatures, and again as adults, under two hunger states (satiated and 7 days without food). Patches varied in the type of sensory information provided by live prey (crickets) as follows: visual cues alone; vibratory cues alone; combined visual/vibratory cues; and control (no prey). Without feeding in patches, the type of sensory stimuli available from prey strongly affected patch residence time, with spiders using primarily visual rather than vibratory cues. Hunger level as a main effect had no influence on residence time, but hunger state did mediate the importance of visual or vibratory information. Significant age- and sex-related differences in patch residence time in the presence of different sensory cues were found.These data suggest that ontogenetic and sex-specific foraging strategies are influenced by use of prefeeding perceptual cues rather than hunger state in wolf spiders. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

2.
Differences in foraging patterns mediated by sensory cues were examined between adult and juvenile male and female wolf spiders (Schizocosa rovneri; Lycosidae). Patch residence time for thirty-one spiders were tested among juveniles and adults in artificial foraging patches. Patches varied in sensory information provided by live prey (crickets) as follows: visual stimuli alone; vibratory stimuli alone; visual and vibratory stimuli together; and control (no stimuli). Spiders moved between patches for one hour, but could not feed. Adult Schizocosa rovneri use primarily visual information to determine patch residence time, but juveniles use vibratory cues as well. Significant age and sex-based differences in the use of sensory cues suggest that observed divergent foraging strategies are partly due to the use of different perceptual cues in prey detection.  相似文献   

3.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

4.
In the wolf spider, Hogna helluo , we tested the response to insect and spider prey chemical cues and whether they show a preference for cues associated with prey consumed most recently. Thirty adult female H. helluo were maintained on a diet of either females of a smaller co-occurring wolf spider ( Pardosa milvina ) or domestic crickets ( Acheta domesticus ). A single P. milvina or cricket nymph was maintained on filter paper for 24 h, after which the papers from both prey sources were simultaneously presented to individual H. helluo from each diet treatment group. H. helluo locomotor behavior on each treatment and initial substrate preference was recorded (n = 15/treatment). H. helluo fed crickets showed significantly longer residence time and decreased mobility on filter paper previously occupied by a cricket; spiders fed P. milvina showed longer residence times and decreased mobility on filter paper previously occupied by P. milvina . H. helluo fed P. milvina exhibited an initial preference for substrates previously occupied by P. milvina but H. helluo fed crickets did not show a corresponding initial preference for crickets. Results suggest that H. helluo can detect distant cues associated with P. milvina but not crickets before contacting the substrate and that H. helluo respond to chemical cues from prey and show a preference for those cues associated with their most recent prey.  相似文献   

5.
 Because cannibals are potentially both predator and prey, the presence of conspecifics and alternative prey may act together to influence the rate at which cannibals prey upon each other or emigrate from a habitat patch. Wolf spiders (Lycosidae) are cannibalistic-generalist predators that hunt for prey with a sit-and-wait strategy characterized by changes in foraging site. Little information is available on how both prey abundance and the presence of conspecifics influence patch quality for these cursorial, non-web-building spiders. To address this question, laboratory experiments were conducted with spiderlings and older juveniles of the lycosid genus Schizocosa. The presence of insect prey consistently reduced rates of spider emigration when spiders were housed either alone or in groups. Solitary juvenile Schizocosa that had been recently collected from the field exhibited a median giving-up time (GUT) of 10 h in the absence of prey (Collembola); providing Collembola increased the median GUT to 64 h. For solitary spiders, the absence of prey increased by about fourfold the rate of emigration during the first 24 h. In contrast, for spiders in patches with a high density of conspecifics, the absence of prey increased the 24-h emigration rate by only 1.6-fold. For successful cannibals in the no-prey patches, the presence of conspecifics improved patch quality by providing a source of food. Mortality by cannibalism was affected by both prey availability and openness of the patch to net emigration. In patches with no net emigration, the presence of prey reduced rates of cannibalism from 79% to 57%. Spiders in patches open to emigration but not immigration experienced a rate of cannibalism (16%) that was independent of prey availability. The results of these experiments indicate that for a cannibalistic forager such as the wolf spider Schizocosa, (1) the presence of conspecifics can improve average patch quality when prey are absent, and (2) cannibalism has the potential to be a significant mortality factor under natural field conditions because cannibalism persisted in prey patches that were open to emigration. Received: 12 April 1996 / Accepted: 14 August 1996  相似文献   

6.
Blue jays (Cyanocitta cristata) were presented with a foragingsituation in which half of the patches they encountered containedno prey and half contained a single prey item. Experimentallydetermined probability distributions controlled prey arrivaltimes in those patches that contained prey. Patch residencein empty patches was studied during four experiments. In thefirst, prey arrival was exponentially distributed. Residencetimes increased with travel time as predicted by a rate-maximizationmodel, but the bird stayed in empty patches much longer thanpredicted. During the second experiment, prey arrival was uniformlydistributed. The jays again stayed longer than optimal, andpatch residence times increased as travel time increased, althoughthe residence time that maximized rate of intake was independentof travel time under these conditions. In the third experiment,exponential and uniform patches were randomly intermixed. Thejays showed larger travel-time effects in the exponential thanin the uniform patch. However, the travel-time effect in theuniform patch was contrary to rate-maximization predictions,and the birds again overstayed in both patch types. In the fourthexperiment, prefeeding at the start of each foraging bout slightlyincreased overstaying rather than decreasing overstaying, aswould be expected if overstaying were due to underestimatingenvironmental quality. Consistent and dramatic overstaying anda travel-time effect under conditions where travel time hasno effect on optimal residence times suggest that the rate-maximizationapproach does not apply to foraging problems involving patchuncertainty.  相似文献   

7.
Patch-related behaviour of a generalist predator may be influenced by patch prey diversity and result in more time being spent in patches with more than one prey species to increase the benefits of mixed diet. To examine if generalist predators are able to discern differences in prey diversity in and among patches, we examined the patch-related behaviour of the predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae). Three lab experiments using clean, single-prey or mixed-prey patches were conducted, using whiteflies and spider mites as prey. The experiments were: (1) patch leaving tendency and residence time in absence and (2) presence of another patch, (3) patch preference. A. swirskii recognized prey-inhabited patches from a distance and showed a preference for mixed-prey patches over single-prey patches. The patch-related behaviour of A. swirskii, which seems tuned to exploiting the fitness gains of a mixed diet, is influenced by both local and distant cues.  相似文献   

8.
This paper addresses optimal giving-up time of a sit-and-waitforager by a rate maximization model. It was assumed that aforager takes at most only one prey item in a patch in one trial,that is, the forager leaves a patch with a prey item (if itattacks it) or without prey (if it gives up). Some kinds ofsit-and-wait foragers, like owls, hunt in this manner. The followingassumptions were made: (1) A forager recognizes the habitattype of patches (e.g., forest type or grassland type). (2) Spatialor temporal heterogeneity generates the uncertainty of the environmentin each habitat type. It was assumed that in a patch (in habitattype i), prey encounter rate (X) is fixed during the trial andencounter with prey depends on a Poisson process. However, preyencounter rate varies across trials within each habitat typeaccording to i-(). Thus the forager does not know the prey encounterrate that is assigned to each patch in the type, but it knowsthe probability density function, i-(). (3) The forager encounterseach habitat type randomly in the environment. The patch residencetime for each habitat type was considered as the only decisionparameter. Considering stochastic change of prey encounter ratein patches of a habitat type, information limitation for theforaging animal can be treated. Patch residence time was influencedby the pattern of the stochasticity. When the forager knowsperfectly the encounter rate of prey in each patch (i.e., nostochasticity), the optimal giving-up time is infinite or zero(reject the patch). With the limited information (stochasticenvironment), the condition for a finite, nonzero optimal giving-uptime in patches of a habitat depends on how far the worst caseis below the average among patches of the habitat and how badthe worst case is compared to the average of the whole environment.In a negatively skewed habitat, these conditions tend to holdeasily. The optimal forager should perform pessimistically ordoubt whether the patch contains prey, that is, set a finitegiving-up time. In a positively skewed habitat, the optimalforager should perform optimistically, that is, set an infinitegiving-up time. The expected gain is higher in the positivelyskewed habitat than in the negatively skewed habitat. When theforager must choose between the two habitats, it should choosethe positively skewed habitat. [Behav Ecol 1991;2:283–294]  相似文献   

9.
A large number of studies on both animals and humans have demonstratedthat learning is influenced by context or secondary cues thatare present when an association is formed. Few studies, however,have examined the functional value of attending to context.We first demonstrated that jumping spiders, Phidippus princeps,could be trained to avoid aposematic, distasteful milkweed bugs,Oncopeltus fasciatus. Spiders readily attacked bugs on firstexposure but were significantly less likely to do so after eighttrials, although they subsequently attacked and ate crickets.Spiders exposed to nontoxic milkweed bugs reared on sunflowerseeds did not show the same decline in attack rate. We nextexamined the effects of secondary contextual cues on spiderlearning by training spiders to avoid milkweed bugs in one oftwo environments. When spiders were tested in an environmentdifferent from the one in which they were trained, attack ratesincreased, and spiders no longer demonstrated retention of theassociation. Spiders tested in the same environment in whichthey were trained continued to avoid attacking the bugs. Theseresults have potential consequences for the evolution of bothpredator and prey and point to the importance of studying context-dependentlearning.  相似文献   

10.
Predators and prey often engage in a game where predators attemptto be in areas with higher prey densities and prey attempt tobe in areas with lower predator densities. A few models havepredicted the resulting distributions of predators and prey,but little empirical data exist to test these predictions andto examine how abiotic and biotic factors shape the distributions.Thus, we observed how Anax dragonfly nymphs and Pacific treefrog tadpoles (Pseudacris regilla) either together or separatelydistributed themselves in an arena with a high- and a low-preyresource patch. Trials were conducted in high- and low-lightconditions to manipulate predation risk and to view the effectsof this abiotic factor. Counter to the model predictions, wefound that predators were not more abundant in high-resource(HR) patches, and they thus did not force prey toward beinguniformly distributed. Using a model selection approach to assesswhat factors affected predator and prey patch-switching movement,we found that prey more often left patches that had more predatorspresent, but predators surprisingly more often left patcheswith more prey present. Light levels did not affect predationrisk; however, in the dark with the associated reduction invisual information predators preferred HR patches. This causeda lower coincidence of prey and predators in patches. Predatorsalso switched patches less often when they occupied the samepatch as the other predator. This suggests that predator distributions,and indirectly prey distributions, are affected by the riskof intraguild predation.  相似文献   

11.
We tested the relative and combined effects of prey density and patch size on the functional response (number of attacks per unit time and duration of attacks) of a predatory reef fish (Cheilodactylus nigripes (Richardson)) to their invertebrate prey. Fish attacked prey at a greater rate and for longer time in large than small patches of prey, but large patches had naturally greater densities of prey. We isolated the effects of patch size and prey density by reducing the density of prey in larger patches to equal that of small patches; thereby controlling for prey density. We found that the intensity at which fish attacked prey (combination of attack rate and duration) was primarily a response to prey density rather than the size of patch they occupied. However, there was evidence that fish spent more time foraging in larger than smaller patches independent of prey density; presumably because of the greater total number of prey available. These experimental observations suggest that fish can distinguish between different notions of prey abundance in ways that enhance their rate of consumption. Although fish may feed in a density dependent manner, a critical issue is whether their rate of consumption outstrips the rate of increase in prey abundance to cause density dependent mortality of prey.  相似文献   

12.
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg‐densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual‐based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post‐alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre‐alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size – density relationships were similar to those observed in the field. The importance of pre‐ and post‐ alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed.  相似文献   

13.
The effects of patch quality on the foraging behaviour of an anthocorid predator Orius sauteri (Poppius) were compared between sexes. Prior experience in patches was also studied to determine whether this was a factor affecting oviposition decisions. Patch quality affected patch residence time differently for the two sexes; females stayed much longer in a patch with prey (60 Thrips palmi larvae) than a patch without prey, while males did not remain in any patch for extended periods. Most of the females remained in or moved to patches with prey, whereas males dispersed, irrespective of patch quality. Both females released in patches with prey and females released in patches without prey deposited more eggs per hour in patches with prey than in patches without prey. Females released in patches without prey laid eggs in patches with prey at higher rates than did females released in patches with prey. Causes for the sex difference in patch residence time and allocation are discussed in relation to optimal foraging theory. The significance of selective oviposition and the role of experience in oviposition decisions within heterogeneous environments are also discussed.  相似文献   

14.
To define general principles of predator‐prey dynamics in an estuarine subtidal environment, we manipulated predator density (the blue crab, Callinectes sapidus) and prey (the clam, Macoma balthica) patch distribution in large field enclosures in the Rhode River subestuary of the central Chesapeake Bay. The primary objectives were to determine whether predators forage in a way that maximizes prey consumption and to assess how their foraging success is affected by density of conspecifics. We developed a novel ultrasonic telemetry system to observe behavior of individual predators with unprecedented detail. Behavior of predators was more indicative of optimal than of opportunistic foraging. Predators appeared responsive to the overall quality of prey in their habitat. Rather than remaining on a prey patch until depletion, predators appeared to vary their patch use with quality of the surrounding environment. When multiple (two) prey patches were available, residence time of predators on a prey patch was shorter than when only a single prey patch was available. Predators seemed to move among the prey patches fairly regularly, dividing their foraging time between the patches and consuming prey from each of them at a similar rate. That predators more than doubled their consumption of prey when we doubled the number of prey (by adding the second patch) is consistent with optimizing behaviors ‐ rather than with an opportunistic increase in prey consumption brought about simply by the addition of more prey. Predators at high density, however, appeared to interfere with each other's foraging success, reflected by their lower rates of prey consumption. Blue crabs appear to forage more successfully (and their prey to experience higher mortality) in prey patches located within 15–20 meters of neighboring patch, than in isolated patches. Our results are likely to apply, at least qualitatively, to other crustacean‐bivalve interactions, including those of commercial interest; their quantitative applicability will depend on the mobility of other predators and the scale of patchiness they perceive.  相似文献   

15.
Herbivorous insects are commonly faced with host plants being distributed in scattered patches across a landscape. Immigration rates into habitat patches may strongly depend on the sensory cues used in the patch location process, and immigration rates of insects can be predicted based on the scaling of sensory cues. Here, we tested recent estimates of the scaling of olfactory information to patch size, which predicts a scaling coefficient ζ ≈ ?0.5 (A ζ , where A = patch size, ζ = scaling coefficient). We predicted that immigration rates of olfactory searching insects into patches of different sizes should scale according to the estimated slope. We investigated attraction of the weevils Cionus tuberculosus and Cionus scrophulariae to odors from figwort Scrophularia nodosa and quantified immigration rates of weevils into differently sized patches. We also investigated oviposition rates of the sawfly Tenthredo scrophulariae. The slope in the regression between density and patch size for herbivores was then compared with the predicted scaling coefficient. Using olfactometers, we found that weevils were attracted to figwort odors. Weevil densities were significantly affected by patch size, and the slope in the relationship between density and patch size was ζ = ?0.53. The slope in the relationship between larval densities of sawflies and patch size was less negative with a slope of ζ = ?0.15, indicating differences in search behavior compared with the weevils. The density–patch size relationship for the weevils closely matched the predicted slope and supported the previous estimations of the scaling of olfactory information to patch size.  相似文献   

16.
Jan A. Van Gils 《Oikos》2010,119(2):237-244
When prey are cryptic and are distributed in discrete clumps (patches), Bayesian foragers revise their prior expectation about a patch's prey density by using their foraging success in the patch as a source of information. Prey densities are often spatially autocorrelated, meaning that rich patches are often surrounded by other rich patches, while poor patches are often in the midst of other poor patches. In that case, foraging success is informative about prey densities in the current patch and in the surrounding patches. In a spatially explicit environment where prey are cryptic and their densities autocorrelated, I modelled two types of Bayesian foragers that aim to maximize their survival rate: (1) the spatially ignorant forager which does not take account of the spatial structure in its food supply and (2) the spatially informed forager which does take this into account. Not surprisingly, the spatially informed forager has a higher survivorship than the spatially ignorant forager, simply because it is able to obtain more reliable prey density estimates than the spatially ignorant forager. Surprisingly though, the emerging policy used by the spatially informed forager is to leave patches at a lower (expected) giving‐up density (GUD) the further away from its latest prey capture. This is because this forager is willing to wait for good news: a prey capture far from the latest prey capture drastically changes the forager's expectations about prey densities in the patches that it will exploit in the near future, whereas a prey capture near its latest prey capture hardly affects these expectations. Thus, by sacrificing current intake rate for information gain, the spatially informed forager ultimately maximizes its long‐term pay‐off. Finally, as the value of food is less the more energy is stored, both types make state‐dependent giving‐up decisions: the higher their energy store levels, the higher their GUDs.  相似文献   

17.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

18.
The ability to accurately assess local predation risk is criticalto prey individuals, as it allows them to maximize threat-sensitivetrade-offs between predator avoidance and other fitness relatedactivities. A wide range of taxonomically diverse prey (includingmany freshwater fishes) relies on chemical alarm cues (alarmpheromones) as their primary information source for local riskassessment. However, the value of chemical alarm cues has beenquestioned due to the availability of additional sensory inputs(i.e., visual cues) and the lack of an overt antipredator responseunder conditions of low perceived risk. In this paper, we testthe hypothesis that chemical alarm cues at concentrations belowthe point at which they elicit an overt behavioral responsefunction to increase vigilance towards other sensory modalities(i.e., visual alarm cues). Shoals of glowlight tetras (Hemigrammuserythrozonus) exposed to the subthreshold concentration of hypoxanthine-3-N-oxide(the putative Ostariophysan alarm pheromone) did not exhibitan overt antipredator response in the absence of secondary visualcues (not different than the distilled water control). However,when exposed to the sight of a visually alarmed conspecific,they significantly increased the intensity of their antipredatorresponse (not different from shoals exposed to the suprathresholdalarm cue). This study demonstrates that prey may benefit fromresponding to low concentration alarm cues by increasing vigilancetowards secondary cues during local risk assessment, even inthe absence of an overt behavioral response. By increasing vigilancetowards secondary risk assessment cues in the presence of alow risk chemical cue, individuals are likely able to maximizethe threat-sensitive trade-offs between predator avoidance andother fitness related activities.  相似文献   

19.
Charnov's (1976) marginal value theorem, MVT, addresses howlong a forager should stay in a patch of prey to maximize itsgain. Information-sharing models of group foraging suggest thatindividuals should join groups to improve their patch-findingrate. This is achievable if group members share informationabout the location of food patches. The determinants of theMVT are searching time and cumulative gain against time in apatch, those of the group foraging models are searching time,group size, and individual differences in ability to monopolizethe prey found. After combining the MVT and information-sharingmodels we explore the consequences of unequal competitors (good,G, and poor, P) foraging in groups. Under this domain G andP differ in their accumulated harvest against time in a patch.When the gain function of P is obtained by mere scaling of thatof G, optimal patch residence times for individuals of the twophenotypes do not differ. However, if the gain functions ofG and P cannot be derived from each other by a constant scalingmultiplier, the optimal patch times for G and P are not necessarilythe same. Under these conditions the model suggests that foraginggroups should become assorted by foraging ability.  相似文献   

20.
Field experiments carried out on the nocturnal orb weaver spider, Neoscona crucifera (Aranea: Araneidae), found in deciduous hardwood forests suggest that lighted areas where prey densities are elevated provide cues used by the spiders to rank optimal foraging sites. Specifically, experiments were conducted to test whether spiders exhibited preferences for lighted areas where prey densities are high, maximizing their energy intake per unit of foraging time, and minimizing energy expended on web building. Incandescent light bulbs of 4–60 W were used to influence prey densities, and results indicate that when given a choice of brighter versus darker foraging areas, spiders seek lighted areas where prey densities are high. In addition, results support the hypothesis that the size and time of web construction are drastically reduced in brighter situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号