首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterns of floral development, dry matter distribution and seed yield were examined in winter oilseed rape plants subjected to different pre-floral growth environments. The duration of pre-floral growth and plant size at flower initiation, measured in terms of total mainstem leaf number, were manipulated by varying the temperature between seedling emergence and flower initiation. Exposure of seedlings to low temperatures from cotyledon expansion onwards markedly reduced the duration of pre-floral growth and the number of leaves on the mainstem. The subsequent development pattern of plants was largely dependent on the date of flower initiation and therefore vernalisation requirement. Indeed, the period of growth from flower initiation to maturity, considered on the basis of thermal time, was directly related to the duration of pre-floral growth and mainstem leaf number. The thermal durations of the bud development phase and flowering period in plants exposed to different pre-floral cold treatments but with a common date of flower initiation were similarly linked to these two parameters. Plants exposed to prolonged periods of low temperature treatment from cotyledon expansion onwards initiated fewer mainstem leaves during a relatively short pre-floral growth phase and their yield potential was limited by a reduction in branch and flower numbers. Plants maintained at higher temperatures produced more mainstem leaves during an extended period of pre-floral growth and supported a greater number of branches and flowers. However, this additional yield potential was not realised due to a reduction in seed numbers and mean seed weight. It appeared that seed yield of these plants was limited by increased competition between an excessive number of lower branches and flowers, a problem apparently created by excessive pre-floral growth. Minimal competition for available assimilates between the limited number of branches of plants with a shorter pre-floral growth phase and fewer mainstem leaves, resulted in lower levels of pod abortion, greater seed production and ultimately increased seed yields.  相似文献   

2.
Flowering requirements in Bromus inermis, a short-long-day plant   总被引:3,自引:0,他引:3  
Smooth bromegrass plants ( Bromus inermis Leyss.) have a dual photoperiodic requirement for flowering. At temperatures ranging from 6 to 24°C, short days (SD) are necessary for primary induction while a transition to long days (LD) is required for initiation of flower primordia, culm elongation and flower development (secondary induction). Critical photoperiods for primary induction (50% flowering) were 13.5 h (15°C) and 12 h (24°C) in the American cv. Manchar and 14.5 and 13 h, respectively, in the Norwegian cv. Löfar. For the secondary induction the respective critical photoperiods were 14 and 15 h in 'Manchar' and 16 and 17.5 h in 'Löar', which also appeared to be better adapted to low temperatures. Low temperature vernalization in LD for up to 16 weeks at 3°C was unable to cause primary induction and temperatures below 12°C also strongly reduced the SD effect. At optimum temperature (15-2TC) 4 to 6 weeks of 8-10 h SD treatments were needed for optimal primary induction effect. A minimum of 8 LD cycles of 24 h were required for complete secondary induction in 'Manchar', while more than 16 cycles were needed in 'Löfar'. Seedlings grown in SD developed a rosette type of growth with shoots growing in a decumbent position, while those in LD grew upright and formed elongated vegetative culms. Rate of leaf initiation was enhanced by about 60% by LD while tillering was promoted by SD.  相似文献   

3.
Floral induction and development requirements of a range of latitudinal and altitudinal Norwegian populations of the wild strawberry Fragaria vesca L. have been studied in controlled environments. Rooted runner plants were exposed to a range of photoperiods and temperatures for 5 weeks for floral induction and then transferred to long day (LD) at 20°C for flower development. A pronounced interaction of temperature and photoperiod was shown in the control of flowering. At 9°C, flowers were initiated in both short day (SD) and LD conditions, at 15 and 18°C in SD only, whereas no initiation took place at 21°C regardless of daylength conditions. The critical photoperiod for SD floral induction was about 16 h and 14 h at 15 and 18°C, respectively, the induction being incomplete at 18°C. The optimal condition for floral induction was SD at 15°C. A minimum of 4 weeks of exposure to such optimal conditions was required. Although the populations varied significantly in their flowering performance, no clinal relationship was present between latitude of origin and critical photoperiod. Flower development of SD-induced plants was only marginally advanced by LD conditions, while inflorescence elongation and runnering were strongly enhanced by LD at this stage. The main shift in these responses took place at photoperiods between 16 and 17 h. Unlike all other populations studied, a high-latitude population from 70°N ('Alta') had an obligatory vernalization requirement. Although flowering and fruiting in its native Subarctic environment and after overwintering in the field in south Norway, this population did not flower in the laboratory in the absence of vernalization, even with 10 or 15 weeks of exposure to SD at 9°C. Flowering performance in the field likewise indicated a vernalization requirement of this high-latitude population.  相似文献   

4.
The perennial herb Leucanthemum vulgare (oxeye daisy) has a dual induction requirement for flowering. The primary induction is a typical low temperature vemalization response. Temperatures up to 15°C are effective, and the optimum is 6–9°C. Short days (SD) during low temperature exposure enhanced primary induction, but SD could not fully substitute for low temperature in primary induction. At optimum temperatures about 6 weeks exposure were required for 100% flowering, but the flowering response increased with increasing exposure up to 12 weeks, especially at higher temperatures. Seedling have a short juvenile phase of about 4 weeks. Populations with origin ranging from 59 to 69°N in Norway did not vary in their primary induction requirements. Long days (LD) were required for inflorescence initiation and stem elongation at 9°C. At 21 and 15°C some plants initiated and developed inflorescences in SD, but the inflorescences were sessile and their development strongly delayed. More than 16 LD cycles were required for normal stem elongation (bolting).  相似文献   

5.
Effects of temperature on flower development in cineraria cv. Cindy Blue were studied in controlled environment rooms and in glasshouses. The base, optimum and maximum temperatures respectively for progress to macroscopic flower appearance after flower initiation respectively were 1.6°C, 19.3°C and 39.8°C. From these cardinal temperatures, a thermal time requirement for flower appearance after flower initiation was calculated to be 130°Cd. The base, optimum and maximum temperatures for progress to anthesis after flower initiation were respectively 1.7°C, 22.3°C and 37.1°C and from these values, the thermal time required to reach anthesis after flower initiation was calculated to be 555°Cd. No significant difference was demonstrated between thermal times for flower development in plants grown in controlled environment growth rooms or under glasshouse conditions where irradiance and photoperiod varied markedly.  相似文献   

6.
Cerastium regelii has a distribution confined largely to regions north of 70° N but has retained a strong short-day (SD) response for primary flower induction despite the fact that it will hardly ever experience SD in a non-frozen condition in its natural environment. However, like many other high-latitude short-long-day plants it has also an alterntive long day (LD) pathway for floral initiation at low temperatures (<15°C). Floral primordia which are fully differentiated during SD have an absolute requirement for LD for flower development. The critical photoperiod for this LD response is about 16 h at 18°C and more than 20 h at 9°C. Plant morphology, including key characters for identification of the species, is greatly modified by environment and stage of plant development. At higher temperatures and LD C. regelii develops a striking resemblance to the sub-arctic C. jenisejense . Based on examination of authentic herbarium material it is concluded that the latter is merely a high-temperature morphotype of C. regelii .  相似文献   

7.
Flowering requirements of Scandinavian Festuca pratensis   总被引:1,自引:0,他引:1  
Flowering requirements of three Scandinavian cultivars of Festuca pratensis Huds, have been studied in controlled environments. At 3 and 6°C, primary induction was independent of photoperiod, while short days (8 h) were more effective than long days (24 h) at higher temperatures. The critical temperature for induction was about 15°C in short days and about 12°C in long days. Saturation of induction required 18–20 weeks of exposure to optimal conditions. At temperatures below 12°C both induction and initiation of inflorescence primordia took place in long days, while a transition to long days was required for inflorescence initiation after primary induction in short days. A minimum of 8 long-day cycles were required for flowering of plants primary induced in short days and saturation of flowering required more than 16 cycles. The critical photoperiod for secondary induction was about 13 h. High temperature (21°C) had some devernalization effect in primary induced plants, suppressing flowering compared with 15°C.  相似文献   

8.
Growth analysis techniques are used to test the hypothesis that chilling induces curd (flower) initiation in the cauliflower ( Brassica oleracea Botrytis L. cv. Perfection) through inhibiting leaf growth, thereby increasing the availability of growth factors to the stem apex and enabling differentiation of the curd. Effects of chilling on leaf growth and curd induction are compared in juvenile and mature, vegetative plants. Chilling at 5°C reduced dry matter accumulation in the total leaf complement by ca 60% in juvenile plants and 40% in mature plants, compared to control plants growth at 20°C. Juvenile plants showed slower rates of leaf initiation than mature plants. Leaf initiation was retarded by chilling in both plant types with the most marked effect seen in the juvenile plants. This was consistent with dry matter availability to the stem apex limiting differentiation more severely in juvenile plants than in mature plants. The rate of dry matter accumulation in existing leaves, however, was faster in juvenile plants than in mature plants at 20°C. Plants that were juvenile during chilling produced an average of 43 leaves below the curd whereas those that were mature produced 25.
Dry matter accumulation in younger leaves was more markedly inhibited by chilling than in older leaves. Chilling also reduced the rate at which enlarging leaves became positionally more remote from the stem apex. Possible roles for such leaves in regulating apical development are considered.  相似文献   

9.
Temperature is one of the main external factors affecting anthocyanin accumulation in plant tissues: low temperatures cause an increase and elevated temperatures cause a decrease in anthocyanin concentration. Several metals have been shown to increase the half-life time of anthocyanins, by forming complexes with them. We studied the combined effect of elevated temperatures and increased metal concentrations on the accumulation of anthocyanins in aster 'Sungal' flowers. It has been found that magnesium treatment of aster plants or detached flower buds, partially prevents colour fading at elevated temperatures. Anthocyanin concentration of aster 'Sungal' flowers grown at 29°C/21°C day/night, respectively, was about half that of flowers grown at 17°C/9°C. The activity of phenylalanine ammonia-lyase (PAL) and chalcone isomerase (CHI) decreased as the temperature increased. Treatment of both whole plants and detached flower buds grown at elevated temperatures in the presence of magnesium salts, increased flower anthocyanin concentration by up to 80%. Measurement of magnesium following these treatments revealed an increased level of the metal in the petals, suggesting a direct effect. Magnesium treatment does not seem to cause increased synthesis of anthocyanin through a stress-related reaction, since the activities of both PAL and CHI did not increase due to this treatment. The results of this study show that increasing magnesium levels in aster petals prevents the deleterious effect of elevated temperatures on anthocyanin accumulation, thus enhancing flower colour.  相似文献   

10.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

11.
Frost tolerance has been reported in the shoots of wild, tuberiferous potato species such as Solanum commersonii when the plants are grown in either field or controlled conditions. However, these plants can survive as underground tubers and avoid unfavorable environmental conditions altogether. As such, leaf growth and photosynthesis at low temperature may not be required for survival of the plants. In order to determine the temperature sensitivity of S. commersonii shoots, we examined leaf growth, development and photosynthesis in plants raised at 20/16°C (day/night). 12/9°C and 5/2°C. S. commersonii leaves grown at 5°C exhibited a marked decrease in leaf area and in total chlorophyll (Chl) content per leaf area when compared with leaves grown at 20°C. Furthermore, leaves grown at 5°C did not exhibit the expected decrease in either water content or susceptibility to low-temperature-induced photoinhibition that normally characterizes cold acclimation in frost-tolerant plants. Measurements of CO2-saturated O2 evolution showed that the photosynthetic apparatus of 5°C plants was functional, even though the efficiency of photosystem II photochemistry was reduced by growth at 5°C. A decrease in the resolution of the M-peak in the slow transients for Chl a fluorescence in leaves grown at 12 and 5°C and in all leaves exposed to high light at 5°C indicated that low temperature significantly affected processes on the reducing side of QA, the primary quinone electron acceptor in photosystem II. Thus S. commarsonii exhibits the characteristics of a plant that is limited by chilling temperatures. Although S. commersonii can tolerate light frosts, its sensitivity to chilling temperatures may result in shoot dieback in winter in its native habitat. The plants may avoid both chilling and freezing temperatures by overwintering as underground tubers.  相似文献   

12.
The environmental control of flowering and sex expression has been studied under controlled environment conditions in three populations of the sedge Carex flava L. A dual floral induction requirement was demonstrated in all populations. Low temperature (< 12°C) was obligatory for, and short photoperiods strongly enhanced, primary induction and inflorescence initiation. Stem elongation and inflorescence development were promoted by long photoperiods, although most plants developed stunted flower stems also under short day (SD) conditions. Growth vigour, abundance of flowering and primary induction requirements varied widely among the populations, with critical exposure times for full flowering varying from less than 9 to about 12 weeks in SD at 9°C, and from about 9 to more than 15 weeks in long days (LD). Sex expression in the normally male terminal spike was shifted towards femaleness by marginal or incomplete primary induction. Primary induction in LD resulted in a complete change to entirely female inflorescences, whereas marginal induction in SD resulted in a similar sex reversal in some plants. The results are discussed in relation to environmental and hormonal factors known to modify sex expression in flowering plants and the significance of the results to Carex systematics and classification.  相似文献   

13.
Experiments using controlled environment facilities showed that flowering of Dichondra repens was promoted by chilling plants at 10 C or below. Optimum length of the chilling period was 5–6 weeks. Unchilled plants did not flower. The flowering stimulus resulting from chilling was destroyed by temperatures above 21 C. Rate of flowering was increased by short days during chilling, but short days could not substitute for the chilling requirement. Optimum daylength for flower initiation following chilling was approximately 14 hr and the optimum temperature was approximately 15 C. Flower buds developed in leaf axils of primary stems and laterals, but stem apices remained vegetative. When the chilling requirement was met flowering continued indefinitely as the plants grew.  相似文献   

14.
EVANS  L. T. 《Annals of botany》1959,23(4):521-546
There is a heteroblastic change in leaflet number in many stocksof Vicia faba, the rate of change being affected by the temperatureand photoperiod under which the plants are grown. In all exceptthe earliest flowering stocks of broad beans, and particularlyat high temperatures, flower initiation shows a quantita-tivelong-day response. For full development of the initiated inflorescenceslong days are required. Flower initiation may be accelerated in all except the earliestflowering stocks of V.faba by brief exposures to low temperatures,particularly when the plants are grown in short days at hightemperatures. The response to low temperatures is more rapidat I0° C. than at 4° C. but eventually approaches saturationat both temperatures. More prolonged exposure to low temperaturesdelays flower initia-tion. The response to low temperaturesincreases with increasing plant age but can occur during embryodevelopment on the mother plant. At temperatures above 14° C, and particularly above 23°C, a reaction inhibitory to flower initiation occurs. This reactionis probably restricted to the diurnal dark periods but is operativeat all stages of the life cycle, including embryo development.Its inhibitory effects may be overcome by subsequent cold treatment,and when the low temperature processes have reached saturationsubsequent high temperatures are no longer inhibitory. Although nucleosides could accelerate flower initiation, purineand pyrimidene analogues did not, with one exception, reducethe response to low temperature treatment.  相似文献   

15.
Seed germination, growth and flowering of the arctic-alpine annual Koenigia islandica were studied in controlled environment. Intact (unabraded) seeds germinated poorely at temperatures up to 18°C, with an optimum at 24°C (89% in 10 d). Scarified seeds germinated rapidly, and reached 100% germination in 3 d at 21°C, but no >40% germination occurred at 9 and 12°C, The seeds had no light requirement for germination, nor did fluctuating temperatures improve germination
Dry matter production was optimal at 12°C in both short day (SD) and long day (LD) conditions, but was markedly higher in LD than in SD at identical fluences at all temperatures except 21°C where the plants showed symptoms of severe heat stress. The temperature compensation point for net productivity was estimated to 24°C, and negative carbon balance at higher temperatures might be an important physiological mechanism limiting the distribution of K. islandica in Scandinavia.
Flowering was extremely rapid and independent of daylength, even in a high-arctic population from 79°N, In full summer daylight anthesis was reached 24 d after germination and seeds ripened after 36 d at 15°C, Days to anthesis varied little across the temperature range from 6 to 21°C, giving a linear decrease in the heat-sum requirement for the attainment of flowering with decreasing temperature.
It is concluded that conservative seed germination strategy, tininess and rapid development, low temperature optima for growth and reproduction, and daylength indifference of flowering are important adaptations for success of an annual plant in high-arctic and high-alpine environments, Daylength neutrality has facilitated the wide-latitudinal distribution of K. islandica. including the penetration of the species to the southern hemisphere.  相似文献   

16.
In the monocarpic perennial Cynoglossum officinale L. the probability of flowering is related to the size of the plant. In previous work it was observed that this relation varies between years. We hypothesized that variable conditions during the winter, the period of vernalization, explain this variation.
We collected plants from the field in autumn and placed these under different simulated winter conditions in a climate room. In contrast to our hypothesis, the probability of initiating flowering at a given size was not affected by: ( a ) the temperature during the cold period, ( b ) the duration of the cold period, or ( c ) the application of a plant hormone (GA3) or an inhibitor of gibberellin synthesis (paclobutazol) during the cold period. Winter cold is not necessary for floral initiation, and is only required for elongation of the inflorescence. It is unlikely that winter temperature affects the fraction of plants flowering.
Subsequent morphological investigation of flower development in material collected in the field showed that large plants had primordial inflorescences well before vernalization, sometimes as early as August. In plants grown from seeds under constant conditions in a climate room, the probability of initiating the inflorescence differed for plants grown at various temperatures (34·1% at 15°C, 100% at 20°C, and 95% at 25°C). Our results suggest that environmental conditions in August and September, up to 10 months before actual flowering, could affect the fraction of flowering plants.  相似文献   

17.
Field pennycress (Thlaspi arvense L.) is a winter annual that requires a cold treatment for the induction of stem elongation. An inbred line was selected in which no stem elongation was observed in plants grown for 6 months at 21°C regardless of the prevailing photoperiod. Increased exposure time of plants grown initially at 21°C to cold (2°C) induced a greater rate of stem elongation when the plants were returned to 21°C. Moreover, longer cold treatments resulted in a greater maximum stem height and reduced the lag period for the onset of measurable internode elongation. The optimal temperature range for thermoinduced stem growth was broad: rates of stem growth in plants maintained for 4 weeks at either 2° or 10°C were virtually identical. However, a 4-week thermoinductive treatment at 15°C resulted in a greater lag period for the initiation of stem elongation and a decreased growth rate. The rate of cold-induced stem elongation was greater in plants subjected to long days than for plants subjected to short days following the cold treatment. Thus, photoperiod does not control the induction of stem elongation, but does regulate stem elongation in progress. Exogenous gibberellin A3 (GA3) was able to substitute for the cold requirement, but elicited a greater response in plants maintained under long days than short days. This indicates that photoperiod influences the plant's sensitivity to GAs. The GA biosynthesis inhibitor, 2-chloroethyltrimethyl ammonium chloride, inhibited low temperature-induced stem elongation, and this inhibition was completely reversed by exogenous GA3. These results suggest that cold-induced stem elongation in field pennycress is mediated by some change in the endogenous GA status.  相似文献   

18.
The responses to photoinhibition of photosynthesis at low temperature and subsequent recovery were examined in Arabidopsis thaliana (ecotype Columbia) developed at 4°C cold-acclimating conditions, 23°C non-acclimating conditions and for non-acclimated plants shifted to 4°C (cold-shifted). These responses were determined in planta using Chl fluorescence imaging. We show that cold acclimation results in an increased tolerance to photoinhibition in comparison with non-acclimated plants and that growth and development at low temperature is essential for this to occur. Cold-shifted plants were not as tolerant as the cold-acclimated plants. In addition, we demonstrate this tolerance is as a result of growth under high PSII excitation pressure, that can be modulated by growth temperature or growth irradiance. Cold-acclimated and cold-shifted plants fully recover from photoinhibition in the dark, whereas non-acclimated plants show reduced levels of recovery and demonstrate a requirement for light. The role of the PSII repair cycle, PSII quenching centres, and the use of Chl fluorescence imaging to monitor photoinhibitory responses in planta are discussed.  相似文献   

19.
20.
Environmental temperature is a critical factor in the lives of almost all organisms. Plants experience periods of thermal stress related to seasonal patterns of temperature and periodic water deficits. Within the range of non-lethal temperatures, there are a number of thermal effects on metabolism that are a result of the thermal dependence of enzymes. The thermal dependence of enzyme kinetic parameters was used to predict that the efficacy of the herbicide pyrithiobac on Palmer amaranth would be reduced at temperatures outside a 20–34°C thermal application range. This prediction is validated in a controlled environment study described in this paper. Palmer amaranth was grown for 16 days in growth chambers with 34/18°C day/night temperature regime. Pyrithiobac was applied to plants at 18, 27 or 40°C. After 1 h at the application temperatures the plants were returned to the 34/18°C regime for 14 days and post-application biomass accumulation (efficacy) was determined. Dry weight accumulation, as a percentage of untreated controls, was 25, 2.5 and 70% for 18, 27 and 40°C application temperatures. Pyrithiobac efficacy was highest for the application within the thermal application range and significantly reduced at temperatures above and below. The validation of the earlier prediction suggests that temperature-related kinetic limitations on herbicide efficacy may also occur in plants with bioengineered herbicide resistance based on herbicide metabolism. The theoretical aspects of such thermal limitations on herbicide resistance mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号