首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is typical in QTL mapping experiments that the number of markers under investigation is large. This poses a challenge to commonly used regression models since the number of feature variables is usually much larger than the sample size, especially, when epistasis effects are to be considered. The greedy nature of the conventional stepwise procedures is well known and is even more conspicuous in such cases. In this article, we propose a two-phase procedure based on penalized likelihood techniques and extended Bayes information criterion (EBIC) for QTL mapping. The procedure consists of a screening phase and a selection phase. In the screening phase, the main and interaction features are alternatively screened by a penalized likelihood mechanism. In the selection phase, a low-dimensional approach using EBIC is applied to the features retained in the screening phase to identify QTL. The two-phase procedure has the asymptotic property that its positive detection rate (PDR) and false discovery rate (FDR) converge to 1 and 0, respectively, as sample size goes to infinity. The two-phase procedure is compared with both traditional and recently developed approaches by simulation studies. A real data analysis is presented to demonstrate the application of the two-phase procedure.  相似文献   

2.
Mayer M 《Heredity》2005,94(6):599-605
Regression interval mapping and multiple interval mapping are compared with regard to mapping linked quantitative trait loci (QTL) in inbred-line cross experiments. For that purpose, a simulation study was performed using genetic models with two linked QTL. Data were simulated for F(2) populations of different sizes and with all QTL and marker alleles fixed for alternative alleles in the parental lines. The criteria for comparison are power of QTL identification and the accuracy of the QTL position and effect estimates. Further, the estimates of the relative QTL variance are assessed. There are distinct differences in the QTL position estimates between the two methods. Multiple interval mapping tends to be more powerful as compared to regression interval mapping. Multiple interval mapping further leads to more accurate QTL position and QTL effect estimates. The superiority increased with wider marker intervals and larger population sizes. If QTL are in repulsion, the differences between the two methods are very pronounced. For both methods, the reduction of the marker interval size from 10 to 5 cM increases power and greatly improves QTL parameter estimates. This contrasts with findings in the literature for single QTL scenarios, where a marker density of 10 cM is generally considered as sufficient. The use of standard (asymptotic) statistical theory for the computation of the standard errors of the QTL position and effect estimates proves to give much too optimistic standard errors for regression interval mapping as well as for multiple interval mapping.  相似文献   

3.
Multi-trait QTL mapping in barley using multivariate regression   总被引:4,自引:0,他引:4  
Many studies of QTL locations record several different traits on the same population, but most analyses look at this information on a trait-by-trait basis. In this paper we show how the regression approach to QTL mapping of Haley & Knott (1992) may be extended to a multi-trait analysis via multivariate regression, easily programmed in statistical packages. A procedure for identifying QTL locations using forward selection and bootstrapping is proposed. The method is applied to examine the locations for QTLs for six yield characters (the number of fertile stems, the grain number of the main stem, the main stem grain weight, the single plant yield, the plot yield and the thousand grain weight) in a doubled haploid population of spring barley. Several chromosomal locations with effects on more than one trait are found. The method is also suitable for examining a single trait measured in different years or environments, and is used here to examine data on heading date, a highly heritable trait, and plot yield, a trait with moderate heritability and showing QTL-environment interactions.  相似文献   

4.
Han L  Xu S 《Heredity》2008,101(5):453-464
An improved weighted least square (LS) method for quantitative trait loci (QTL) mapping using the estimating equation (EE) algorithm was developed recently. The method is more efficient than both the LS and the weighted LS methods and slightly less efficient than the mixture model maximum likelihood (ML) method. The iteration process of the EE algorithm is implicit. We developed a Fisher-scoring algorithm for the weighted LS method. The iteration process is explicit and easy to program. In addition, the method automatically provides an approximate variance-covariance matrix for the estimated QTL parameters as a by-product of the iteration process. As a consequence, a W-test statistic can be used for testing the significance of QTL. To compare the Fisher scoring algorithm with the expectation maximization (EM)-based ML method, we also developed a slightly simplified method to compute the variance-covariance matrix of the estimated parameters under the EM algorithm.  相似文献   

5.
It has recently been demonstrated that fine-scale mapping of a susceptibility locus for a complex disease can be accomplished on the basis of deviations from Hardy-Weinberg (HW) equilibrium at closely linked marker loci among affected individuals. We extend this theory to fine-scale localization of a quantitative-trait locus (QTL) from extreme individuals in populations, by means of HW and linkage-disequilibrium (LD) analyses. QTL mapping and/or linkage analyses can establish a large genomic region ( approximately 30 cM) that contains a QTL. The QTL can be fine mapped by examination of the degree of deviation from HW and LD at a series of closely linked marker loci. The tests can be performed for samples of individuals belonging to either high or low percentiles of the phenotype distribution or for combined samples of these extreme individuals. The statistical properties (the power and the size) of the tests of this fine-mapping approach are investigated and are compared extensively, under various genetic models and parameters for the QTL and marker loci. On the basis of the results, a two-stage procedure that uses extreme samples and different tests (for HW and LD) is suggested for QTL fine mapping. This two-step procedure is economic and powerful and can accurately narrow a genomic region containing a QTL from approximately 30-1 cM, a range that renders physical mapping feasible for identification of the QTL. In addition, the relationship between parameterizations of complex diseases, by means of penetrance, and those of complex quantitative traits, by means of genotypic values, is outlined. This means that many statistical genetic methods developed for searching for susceptibility loci of complex diseases can be directly adopted and/or extended to QTL mapping for quantitative traits.  相似文献   

6.
The resistance of rice to ozone (O3) is a quantitative trait controlled by nuclear genes. The identification of quantitative trait loci (QTL) and analysis of molecular markers of O3 resistance is important for increasing the resistance of rice to O3 stress. QTL associated with the O3 resistance of rice were mapped on chromosomes 1, 7 and 11 using 164 recombinant inbred (RI) lines from a cross between 'Milyang 23' and 'Gihobyeo'. The quantitative trait loci were tightly linked to the markers RG109, C507 and RG1094 and were detected in each of three replications. The association between these markers and O3 resistance in 26 rice cultivars and doubled haploid (DH) populations was analysed. The markers permit the screening of rice germplasm for O3 resistance and the introduction of resistance into elite lines in breeding programs.  相似文献   

7.

Background

It has been reported in the quantitative trait locus (QTL) literature that when testing for QTL location and effect, the statistical power supporting methodologies based on two markers and their estimated genetic map is higher than for the genetic map independent methodologies known as single marker analyses. Close examination of these reports reveals that the two marker approaches are more powerful than single marker analyses only in certain cases.Simulation studies are a commonly used tool to determine the behavior of test statistics under known conditions. We conducted a simulation study to assess the general behavior of an intersection test and a two marker test under a variety of conditions. The study was designed to reveal whether two marker tests are always more powerful than intersection tests, or whether there are cases when an intersection test may outperform the two marker approach.We present a reanalysis of a data set from a QTL study of ovariole number in Drosophila melanogaster.

Results

Our simulation study results show that there are situations where the single marker intersection test equals or outperforms the two marker test. The intersection test and the two marker test identify overlapping regions in the reanalysis of the Drosophila melanogaster data. The region identified is consistent with a regression based interval mapping analysis.

Conclusion

We find that the intersection test is appropriate for analysis of QTL data. This approach has the advantage of simplicity and for certain situations supplies equivalent or more powerful results than a comparable two marker test.
  相似文献   

8.
The aim of this study was to explore, by computer simulation, the mapping of QTLs in a realistic but complex situation of many (linked) QTLs with different effects, and to compare two QTL mapping methods. A novel method to dissect genetic variation on multiple chromosomes using molecular markers in backcross and F2 populations derived from inbred lines was suggested, and its properties tested using simulations. The rationale for this sequential testing method was to explicitly test for alternative genetic models. The method consists of a series of four basic statistical tests to decide whether variance was due to a single QTL, two QTLs, multiple QTLs, or polygenes, starting with a test to detect genetic variance associated with a particular chromosome. The method was able to distinguish between different QTL configurations, in that the probability to `detect' the correct model was high, varying from 0.75 to 1. For example, for a backcross population of 200 and an overall heritability of 50%, in 78% of replicates a polygenic model was detected when that was the underlying true model. To test the method for multiple chromosomes, QTLs were simulated on 10 chromosomes, following a geometric series of allele effects, assuming positive alleles were in coupling in the founder lines For these simulations, the sequential testing method was compared to the established Multiple QTL Mapping (MQM) method. For a backcross population of 400 individuals, power to detect genetic variance was low with both methods when the heritability was 0.40. For example, the power to detect genetic variation on a chromosome on which 6 QTLs explained 12.6% of the genetic variance, was less than 60% for both methods. For a large heritability (0.90), the power of MQM to detect genetic variance and to dissect QTL configurations was generally better, due to the simultaneous fitting of markers on all chromosomes. It is concluded that when testing different QTL configurations on a single chromosome using the sequential testing procedure, regions of other chromosomes which explain a significant amount of variation should be fitted in the model of analysis. This study reinforces the need for large experiments in plants and other species if the aim of a genome scan is to dissect quantitative genetic variation.  相似文献   

9.
Almasy L  Blangero J 《Genetica》2009,136(2):333-340
Human quantitative trait locus (QTL) linkage mapping, although based on classical statistical genetic methods that have been around for many years, has been employed for genome-wide screening for only the last 10–15 years. In this time, there have been many success stories, ranging from QTLs that have been replicated in independent studies to those for which one or more genes underlying the linkage peak have been identified to a few with specific functional variants that have been confirmed in in vitro laboratory assays. Despite these successes, there is a general perception that linkage approaches do not work for complex traits, possibly because many human QTL linkage studies have been limited in sample size and have not employed the family configurations that maximize the power to detect linkage. We predict that human QTL linkage studies will continue to be productive for the next several years, particularly in combination with RNA expression level traits that are showing evidence of regulatory QTLs of large effect sizes and in combination with high-density genome-wide SNP panels. These SNP panels are being used to identify QTLs previously localized by linkage and linkage results are being used to place informative priors on genome-wide association studies.  相似文献   

10.
QTL mapping in rice   总被引:16,自引:0,他引:16  
In the past 10 years, interest in applying the tools of molecular genetics to the problem of increasing world rice production has resulted in the generation of two highly saturated, molecular linkage maps of rice, and the localization of numerous genes and quantitative trait loci (QTLs). Primary studies have identified QTLs associated with disease resistance, abiotic stress tolerance and yield potential of rice in a range of ecosystems. The ability to identify, manipulate and potentially clone individual genes involved in quantitatively inherited characters, combined with the demonstrated conservation of numerous linkage blocks among members of the grass family, emphasizes the contribution of map-based genetic analyses both to applied and to basic crop research.  相似文献   

11.
Statistical methods for QTL mapping in cereals   总被引:6,自引:0,他引:6  
This paper gives an overview of the statistical theory suitable for mapping quantitative trait loci in experimental populations derived from inbred parents, with a particular emphasis on methodology for cereal crops. The basic theory is described, and some new areas of statistical research appropriate for mapping in cereal crops are discussed.  相似文献   

12.
Missing marker and segregation distortion are commonly encountered in actual quantitative trait locus (QTL) mapping populations. Our objective in this study was to investigate the impact of the two factors on QTL mapping through computer simulations. Results indicate that detection power decreases with increasing levels of missing markers, and the false discovery rate increases. Missing markers have greater effects on smaller effect QTL and smaller size populations. The effect of missing markers can be quantified by a population with a reduced size similar to the marker missing rate. As for segregation distortion, if the distorted marker is not closely linked with any QTL, it will not have significant impact on QTL mapping; otherwise, the impact of the distortion will depend on the degree of dominance of QTL, frequencies of the three marker types, the linkage distance between the distorted marker and QTL, and the mapping population size. Sometimes, the distortion can result in a higher genetic variance than that of non-distortion, and therefore benefits the detection of linked QTL. A formula of the ratio of genetic variance explained by QTL under distortion and non-distortion was given in this study, so as to easily determine whether the segregation distortion marker (SDM) increases or decreases the QTL detection power. The effect of SDM decreases rapidly as its linkage relationship with QTL becomes looser. In general, distorted markers will not have a great effect on the position and effect estimations of QTL, and their effects can be ignored in large-size mapping populations.  相似文献   

13.
The power of QTL mapping by a mixed-model approach has been studied for hybrid crops but remains unknown in self-pollinated crops. Our objective was to evaluate the usefulness of mixed-model QTL mapping in the context of a breeding program for a self-pollinated crop. Specifically, we simulated a soybean (Glycine max L. Merr.) breeding program and applied a mixed-model approach that comprised three steps: variance component estimation, single-marker analyses, and multiple-marker analysis. Average power to detect QTL ranged from <1 to 47% depending on the significance level (0.01 or 0.0001), number of QTL (20 or 80), heritability of the trait (0.40 or 0.70), population size (600 or 1,200 inbreds), and number of markers (300 or 600). The corresponding false discovery rate ranged from 2 to 43%. Larger populations, higher heritability, and fewer QTL controlling the trait led to a substantial increase in power and to a reduction in the false discovery rate and bias. A stringent significance level reduced both the power and false discovery rate. There was greater power to detect major QTL than minor QTL. Power was higher and the false discovery rate was lower in hybrid crops than in self-pollinated crops. We conclude that mixed-model QTL mapping is useful for gene discovery in plant breeding programs of self-pollinated crops.  相似文献   

14.
Wei Zou  Zhao-Bang Zeng 《Genetica》2009,137(2):125-134
To find the correlations between genome-wide gene expression variations and sequence polymorphisms in inbred cross populations, we developed a statistical method to claim expression quantitative trait loci (eQTL) in a genome. The method is based on multiple interval mapping (MIM), a model selection procedure, and uses false discovery rate (FDR) to measure the statistical significance of the large number of eQTL. We compared our method with a similar procedure proposed by Storey et al. and found that our method can be more powerful. We identified the features in the two methods that resulted in different statistical powers for eQTL detection, and confirmed them by simulation. We organized our computational procedure in an R package which can estimate FDR for positive findings from similar model selection procedures. The R package, MIM-eQTL, can be found at .  相似文献   

15.
16.
The recent technology of the single-nucleotide-polymorphism (SNP) array makes it possible to genotype millions of SNP markers on genome, which in turn requires to develop fast and efficient method for fine-scale quantitative trait loci (QTL) mapping. The single-marker association (SMA) is the simplest method for fine-scale QTL mapping, but it usually shows many false-positive signals and has low QTL-detection power. Compared with SMA, the haplotype-based method of Meuwissen and Goddard who assume QTL effect to be random and estimate variance components (VC) with identity-by-descent (IBD) matrices that inferred from unknown historic population is more powerful for fine-scale QTL mapping; furthermore, their method also tends to show continuous QTL-detection profile to diminish many false-positive signals. However, as we know, the variance component estimation is usually very time consuming and difficult to converge. Thus, an extremely fast EMF (Expectation-Maximization algorithm under Fixed effect model) is proposed in this research, which assumes a biallelic QTL and uses an expectation-maximization (EM) algorithm to solve model effects. The results of simulation experiments showed that (1) EMF was computationally much faster than VC method; (2) EMF and VC performed similarly in QTL detection power and parameter estimations, and both outperformed the paired-marker analysis and SMA. However, the power of EMF would be lower than that of VC if the QTL was multiallelic.  相似文献   

17.
Deng HW  Li YM  Li MX  Liu PY 《Human heredity》2003,56(4):160-165
Hardy-Weinberg disequilibrium (HWD) measures have been proposed using dense markers to fine map a quantitative trait locus (QTL) to regions < approximately 1 cM. Earlier HWD measures may introduce bias in the fine mapping because they are dependent on marker allele frequencies across loci. Hence, HWD indices that do not depend on marker allele frequencies are desired for fine mapping. Based on our earlier work, here we present four new HWD indices that do not depend on marker allele frequencies. Two are for use when marker allele frequencies in a study population are known, and two are for use when marker allele frequencies in a study population are not known and are only known in the extreme samples. The new measures are a function of the genetic distance between the marker locus and a QTL. Through simulations, we investigated and compared the fine mapping performance of the new HWD measures with that of the earlier ones. Our results show that when marker allele frequencies vary across loci, the new measures presented here are more robust and powerful.  相似文献   

18.
Methodologies for segregation analysis and QTL mapping in plants   总被引:1,自引:0,他引:1  
Zhang YM  Gai J 《Genetica》2009,136(2):311-318
Most characters of biological interest and economic importance are quantitative traits. To uncover the genetic architecture of quantitative traits, two approaches have become popular in China. One is the establishment of an analytical model for mixed major-gene plus polygenes inheritance and the other the discovery of quantitative trait locus (QTL). Here we review our progress employing these two approaches. First, we proposed joint segregation analysis of multiple generations for mixed major-gene plus polygenes inheritance. Second, we extended the multilocus method of Lander and Green (1987), Jiang and Zeng (1997) to a more generalized approach. Our methodology handles distorted, dominant and missing markers, including the effect of linked segregation distortion loci on the estimation of map distance. Finally, we developed several QTL mapping methods. In the Bayesian shrinkage estimation (BSE) method, we suggested a method to test the significance of QTL effects and studied the effect of the prior distribution of the variance of QTL effect on QTL mapping. To reduce running time, a penalized maximum likelihood method was adopted. To mine novel genes in crop inbred lines generated in the course of normal crop breeding work, three methods were introduced. If a well-documented genealogical history of the lines is available, two-stage variance component analysis and multi-QTL Haseman-Elston regression were suggested; if unavailable, multiple loci in silico mapping was proposed.  相似文献   

19.

Background

Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure.

Results

We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission) average of the substitution effects of founders'' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component) model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided.

Conclusion

The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号