首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.  相似文献   

2.
3.
FLOWERING LOCUS M (FLM) is a MADS-domain gene that acts as an inhibitor of flowering in Arabidopsis. Here we describe the genetic interaction of FLM with genes in the photoperiod and autonomous flowering pathways. Although the sequence of FLM is most similar to that of FLC, FLM and FLC interact with different flowering pathways. It has been previously shown that flc lesions suppress the late-flowering phenotype of FRI-containing lines and autonomous-pathway mutants. However, flm lesions suppress the late-flowering phenotype of photoperiod-pathway mutants but not that of FRI-containing lines or autonomous-pathway mutants. Another MADS-domain flowering repressor with a mutant phenotype similar to FLM is SVP. The late-flowering phenotype of FLM over-expression is suppressed by the svp mutation, and an svp flm double mutant behaves like the single mutants. Thus FLM and SVP are in the same flowering pathway which interacts with the photoperiod pathway. Abbreviations: CO, CONSTANS; FLC, FLOWERING LOCUS C; FLM, FLOWERING LOCUS M; FRI, FRIGIDA; GI, GIGANTEA; LD, LUMINIDEPENDENS; SVP, SHORT VEGETATIVE PHASE; FCA is not an abbreviation  相似文献   

4.
5.
6.
We sequenced five BAC clones of Brassica oleracea doubled haploid ‘Early Big' broccoli containing major genes in the aliphatic glucosinolate pathway, and comparatively analyzed them with similar sequences in A. thaliana and B. rapa. Additionally, we included in the analysis published sequences from three other B. oleracea BAC clones and a contig of this species corresponding to segments in A. thaliana chromosomes IV and V. A total of 2,946 kb of B. oleracea, 1,069 kb of B. rapa sequence and 2,607 kb of A. thaliana sequence were compared and analyzed. We found conserved collinearity for gene order and content restricted to specific chromosomal segments, but breaks in collinearity were frequent resulting in gene absence likely not due to gene loss but rearrangements. B. oleracea has the lowest gene density of the three species, followed by B. rapa. The genome expansion of the Brassica species, B. oleracea in particular, is due to larger introns and gene spacers resulting from frequent insertion of DNA transposons and retrotransposons. These findings are discussed in relation to the possible origin and evolution of the Brassica genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Active aspartic proteinase is isolated from Brassica napus seeds and the peptide sequence is used to generate primers for PCR. We present here cDNA and genomic clones for aspartic proteinases from the closely related Brassicaceae Arabidopsis thaliana and Brassica napus. The Arabidopsis cDNA represents a single gene, while Brassica has at least 4 genes. Like other plant aspartic proteases, the two Brassicaceae enzymes contain an extra protein domain of about 100 amino acids relative to the mammalian forms. The intron/exon arrangement in the Brassica genomic clone is significantly different from that in mammalian genes. As the proteinase is isolated from seeds, the same tissue where 2S albumins are processed, this implies expression of one of the aspartic proteinase genes there.  相似文献   

8.
9.
Brassica rapa ssp. pekinensis (Chinese cabbage) is an economically important crop and a model plant for studies on polyploidization and phenotypic evolution. To gain an insight into the structure of the B. rapa genome we analyzed 12,017 BAC-end sequences for the presence of transposable elements (TEs), SSRs, centromeric satellite repeats and genes, and similarity to the closely related genome of Arabidopsis thaliana. TEs were estimated to occupy 14% of the genome, with 12.3% of the genome represented by retrotransposons. It was estimated that the B. rapa genome contains 43,000 genes, 1.6 times greater than the genome of A. thaliana. A number of centromeric satellite sequences, representing variations of a 176-bp consensus sequence, were identified. This sequence has undergone rapid evolution within the B. rapa genome and has diverged among the related species of Brassicaceae. A study of SSRs demonstrated a non-random distribution with a greater abundance within predicted intergenic regions. Our results provide an initial characterization of the genome of B. rapa and provide the basis for detailed analysis through whole-genome sequencing.  相似文献   

10.
Quantitative Trait Loci (QTL) for oil content has been previously analyzed in a SG-DH population from a cross between a Chinese cultivar and a European cultivar of Brassica napus. Eight QTL with additive and epistatic effects, and with environmental interactions were evaluated. Here we present an integrated linkage map of this population predominantly based on informative markers derived from Brassica sequences, including 249 orthologous A. thaliana genes, where nearly half (112) are acyl lipid metabolism related genes. Comparative genomic analysis between B. napus and A. thaliana revealed 33 colinearity regions. Each of the conserved A. thaliana segments is present two to six?times in the B. napus genome. Approximately half of the mapped lipid-related orthologous gene loci (76/137) were assigned in these conserved colinearity regions. QTL analysis for seed oil content was performed using the new map and phenotypic data from 11 different field trials. Nine significant QTL were identified on linkage groups A1, A5, A7, A9, C2, C3, C6 and C8, together explaining 57.79% of the total phenotypic variation. A total of 14 lipid related candidate gene loci were located in the confidence intervals of six of these QTL, of which ten were assigned in the conserved colinearity regions and felled in the most frequently overlapped QTL intervals. The information obtained from this study demonstrates the potential role of the suggested candidate genes in rapeseed kernel oil accumulation.  相似文献   

11.
Common structural and amino acid motifs among cloned plant disease-resistance genes (R genes), have made it possible to identify putative disease-resistance sequences based on DNA sequence identity. Mapping of such R-gene homologues will identify candidate disease-resistance loci to expedite map-based cloning strategies in complex crop genomes. Arabidopsis thaliana expressed sequence tags (ESTs) with homology to cloned plant R genes (R-ESTs), were mapped in both A. thaliana and Brassica napus to identify candidate R-gene loci and investigate intergenomic collinearity. Brassica R-gene homologous sequences were also mapped in B. napus. In total, 103 R-EST loci and 36 Brassica R-gene homologous loci were positioned on the N-fo-61-9 B. napus genetic map, and 48 R-EST loci positioned on the Columbia x Landsberg A. thaliana map. The mapped loci identified collinear regions between Arabidopsis and Brassica which had been observed in previous comparative mapping studies; the detection of syntenic genomic regions indicated that there was no apparent rapid divergence of the identified genomic regions housing the R-EST loci.  相似文献   

12.

Background

Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana.

Results

Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species.

Conclusion

This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
Schranz ME  Quijada P  Sung SB  Lukens L  Amasino R  Osborn TC 《Genetics》2002,162(3):1457-1468
Functional genetic redundancy is widespread in plants and could have an important impact on phenotypic diversity if the multiple gene copies act in an additive or dosage-dependent manner. We have cloned four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC, located at the top of chromosome 5 of Arabidopsis thaliana. Relative rate tests revealed no evidence for differential rates of evolution and the ratios of nonsynonymous-to-synonymous substitutions suggest BrFLC loci are not under strong purifying selection. BrFLC1, BrFLC2, and BrFLC3 map to genomic regions that are collinear with the top of At5, consistent with a polyploid origin. BrFLC5 maps near a junction of two collinear regions to Arabidopsis, one of which includes an FLC-like gene (AGL31). However, all BrFLC sequences are more closely related to FLC than to AGL31. BrFLC1, BrFLC2, and BrFLC5 cosegregate with flowering-time loci evaluated in populations derived by backcrossing late-flowering alleles from a biennial parent into an annual parent. Two loci segregating in a single backcross population affected flowering in a completely additive manner. Thus, replicated BrFLC genes appear to have a similar function and interact in an additive manner to modulate flowering time.  相似文献   

14.
Pong elements are active class 2 transposons in rice. We found Pong-like elements in Arabidopsis thaliana and named them as AtPong (Arabidopsis thaliana Pong) elements. The AtPong elements carried 13 bp of TIRs and two ORFs in which NAM DNA binding domain and DDE catalytic domain are encoded. Ping and mPing (miniature Ping) elements are deficient Pong elements and we found AtPong derived deficient AtPing and AtmPing elements. We also found a homologous element of the AtPong element in Brassica rapa. This element was a deficient element by internal deletion, but showed high sequence similarity with the AtmPing so that it was named as BrmPing (Brassica rapa miniature Ping). The AtPong, AtPing, and AtmPing elements were present in intergenic regions except one element, AtPing1, which was present in an exon of a F-box protein gene. Among the different A. thaliana ecotypes, the AtPing1 showed polymorphisms of present and absent in the F-box protein gene. The excision of the AtPing1 restored the expression of the F-box protein gene, indicating that the expression of the F-box protein genes is regulated by the AtPing1.  相似文献   

15.
How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth's environment does not prevail. We used plant growth hardware from prior experiments on the space shuttle to grow Brassica rapa and Arabidopsis thaliana plants during 16-d or 11-d hypergravity treatments on large-diameter centrifuge rotors. Both species showed radical changes in growth form, becoming more prostrate with increasing g-loads (2-g and 4-g). In Brassica, height decreased and stems thickened in a linear relationship with increasing g-load. Glucosinolates, secondary compounds that contribute flavor to Brassica, decreased by 140% over the range of micro to 4-g, while the structural secondary compound, lignin, remained constant at ~15% (w/w) cell wall dry mass. Stem thickening at 4-g was associated with substantial increases in cell size (47%, 226%, and 33% for pith, cortex, and vascular tissue), rather than any change in cell number. The results, which demonstrate the profound effect of gravity on plant growth form and secondary metabolism, are discussed in the context of similar thigmostresses such as touch and wind.  相似文献   

16.
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.  相似文献   

17.
18.
To characterize the coding-sequence divergence of closely related genomes, we compared DNA sequence divergence between sequences from a Brassica rapa ssp. pekinensis EST library isolated from flower buds and genomic sequences from Arabidopsis thaliana. The specific objectives were (i) to determine the distribution of and relationship between K a and K s, (ii) to identify genes with the lowest and highest K a:K s values, and (iii) to evaluate how codon usage has diverged between two closely related species. We found that the distribution of K a:K s was unimodal, and that substitution rates were more variable at nonsynonymous than synonymous sites, and detected no evidence that K a and K s were positively correlated. Several genes had K a:K s values equal to or near zero, as expected for genes that have evolved under strong selective constraint. In contrast, there were no genes with K a:K s >1 and thus we found no strong evidence that any of the 218 sequences we analyzed have evolved in response to positive selection. We detected a stronger codon bias but a lower frequency of GC at synonymous sites in A. thaliana than B. rapa. Moreover, there has been a shift in the profile of most commonly used synonymous codons since these two species diverged from one another. This shift in codon usage may have been caused by stronger selection acting on codon usage or by a shift in the direction of mutational bias in the B. rapa phylogenetic lineage.  相似文献   

19.
Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer‐DNA (T‐DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site‐specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5‐kbp T‐DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T‐DNA left border, and only 8% contained sequence from outside the T‐DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high‐quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.  相似文献   

20.
Genomic and cDNA clones for three inflorescence-specific genes from Arabidopsis thaliana were isolated and characterized. The genes are tandemly organized in the genome on a 10 kb fragment. The expression of these genes is coordinately regulated in a developmental and organ-specific pattern. They are expressed predominantly in anthers at the later stage of flower development. The primary structure of the encoded gene products exhibits comparable features consisting of a hydrophobic domain at the N-terminal region followed by repeated glycine-rich motifs. Little homology is observed either between the glycine-rich domain of the three genes or with previously described glycine-rich proteins from other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号