首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

2.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

3.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.  相似文献   

4.
What is the nature of the transmissible agent responsible for neurodegenerative diseases such as scrapie and mad-cow disease in animals and Creutzfeldt-Jakob disease in man? There is now weighty evidence that PrP(Sc), a modified version of the ubiquitously expressed host protein PrP(C), is responsible for pathogenesis of these diseases and that conversion of PrP(C) into PrP(Sc) under the influence of PrP(Sc) is the process leading to the propagation of PrP(Sc) and disease progression.  相似文献   

5.
Prion diseases are fatal neurodegenerative diseases caused by the accumulation of the misfolded isoform (PrP(Sc)) of the prion protein (PrP(C)). Cell-based screens have identified several compounds that induce a reduction in PrP(Sc) levels in infected cultured cells. However, the molecular targets of most antiprion compounds remain unknown. We undertook a large-scale, unbiased, cell-based screen for antiprion compounds and then investigated whether a representative subset of the active molecules had measurable affinity for PrP, increased the susceptibility of PrP(Sc) to proteolysis, or altered the cellular localization or expression level of PrP(C). None of the antiprion compounds showed in vitro affinity for PrP or had the ability to disaggregate PrP(Sc) in infected brain homogenates. These observations suggest that most antiprion compounds identified in cell-based screens deploy their activity via non-PrP targets in the cell. Our findings indicate that in comparison to PrP conformers themselves, proteins that play auxiliary roles in prion propagation may be more effective targets for future drug discovery efforts.  相似文献   

6.
Ellis V  Daniels M  Misra R  Brown DR 《Biochemistry》2002,41(22):6891-6896
Prion diseases are associated with the conversion of the normal prion protein, PrP(C), to the infectious disease form PrP(Sc). Discrimination between these isoforms would significantly enhance diagnosis of these diseases, and it has recently been reported that PrP(Sc) is specifically recognized by the serine protease zymogen plasminogen (Fischer et al. (2000) Nature 408, 479). Here we have tested the hypothesis that PrP is a regulator of the plasminogen activation system. The effect of recombinant PrP, either containing copper (holo-PrP) or devoid of it (apo-PrP), on plasminogen activation by both uPA and tPA was determined. PrP had no effect on plasminogen activation by uPA. By contrast, the activity of tPA was stimulated by up to 280-fold. This was observed only with the apo-PrP isoforms. The copper-binding octapeptide repeat region of PrP was involved in the effects, as a mutant lacking this region failed to stimulate plasminogen activation, although a synthetic peptide corresponding to this region was unable to stimulate tPA activity. Competition experiments demonstrated that, in addition to plasminogen binding, the stimulation required a high-affinity interaction between tPA and PrP (K(d) < 2.5 nM). Kinetic analysis revealed a template mechanism for the stimulation, suggesting independent binding sites for tPA and plasminogen. Lack of copper-binding may be an early event in the conversion of PrP(C) to PrP(Sc), and our data therefore suggest that tPA-catalyzed plasminogen activation may provide the basis for a sensitive detection system for the early stages of prion diseases and also play a role in the pathogenesis of these diseases.  相似文献   

7.
Prion diseases are infectious, sporadic and inherited fatal neurodegenerations that are propagated by an abnormal refolding of the cellular prion protein PrP(C). Which chaperones assist the normal folding of PrP(C) is unknown. The linkage of familial Gerstmann- Str?ussler-Scheinker (GSS) syndrome with proline substitutions in PrP raised the prospect that peptidylprolyl cis-trans isomerases (PPIases) may play a role in normal PrP metabolism. Here we used cyclo sporin A (CsA), an immunosuppressant, to inhibit the cyclophilin family of PPIases in cultured cells. CsA-treated cells accumulated proteasome-resistant, 'prion-like' PrP species, which deposited in long-lived aggresomes. PrP aggresomes also formed with disease-linked proline mutants when proteasomes were inhibited. These results suggest mechanisms whereby abnormally folded cytosolic PrP may in some cases participate in the development of spontaneous and inherited prion diseases.  相似文献   

8.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

9.
Prion diseases propagate by converting a normal glycoprotein of the host, PrP(C), into a pathogenic "prion" conformation. Several misfolding mutants of PrP(C) are degraded through the ER-associated degradation (ERAD)-proteasome pathway. In their infectious form, prion diseases such as bovine spongiform encephalopathy involve PrP(C) of wild-type sequence. In contrast to mutant PrP, wild-type PrP(C) was hitherto thought to be stable in the ER and thus immune to ERAD. Using proteasome inhibitors, we now show that approximately 10% of nascent PrP(C) molecules are diverted into the ERAD pathway. Cells incubated with N-acetyl-leucinal-leucinal-norleucinal (ALLN), lactacystin or MG132 accumulated both detergent-soluble and insoluble PrP species. The insoluble fraction included an unglycosylated 26 kDa PrP species with a protease-resistant core, and a M(r) "ladder" that contained ubiquitylated PrP. Our results show for the first time that wild-type PrP(C) molecules are subjected to ERAD, in the course of which they are dislocated into the cytosol and ubiquitylated. The presence of wild-type PrP molecules in the cytosol may have potential pathogenic implications.  相似文献   

10.
Prions     
The discovery of infectious proteins, denoted prions, was unexpected. After much debate over the chemical basis of heredity, resolution of this issue began with the discovery that DNA, not protein, from pneumococcus was capable of genetically transforming bacteria (Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bacterial pathogens with respect to the transmission of some nervous system diseases (Prusiner 1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt-Jakob disease (CJD) and related disorders are caused by prions. The prion diseases are characterized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the normal, cellular isoform of the prion protein (PrP(C)) and stimulating its conversion into the disease-causing isoform (PrP(Sc)). PrP(C) and PrP(Sc) have distinct conformations: PrP(C) is rich in α-helical content and has little β-sheet structure, whereas PrP(Sc) has less α-helical content and is rich in β-sheet structure (Pan et al. 1993). The conformational conversion of PrP(C) to PrP(Sc) is the fundamental event underlying prion diseases. In this article, we provide an introduction to prions and the diseases they cause.  相似文献   

11.
Inherited prion diseases are linked to mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. It has been proposed that neuronal death can be triggered by accumulation of PrP in the cytosol because of impairment of proteasomal degradation of misfolded PrP molecules retrotranslocated from the endoplasmic reticulum (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). To test whether this neurotoxic mechanism is operative in inherited prion diseases, we evaluated the effect of proteasome inhibitors on the viability of transfected N2a cells and primary neurons expressing mouse PrP homologues of the D178N and nine octapeptide mutations. We found that the inhibitors caused accumulation of an unglycosylated, aggregated form of PrP exclusively in transfected N2a expressing PrP from the cytomegalovirus promoter. This form contained an uncleaved signal peptide, indicating that it represented polypeptide chains that had failed to translocate into the ER lumen during synthesis, rather than retrogradely translocated PrP. Quantification of N2a viability in the presence of proteasome inhibitors demonstrated that accumulation of this form was not toxic. No evidence of cytosolic PrP was found in cerebellar granule neurons from transgenic mice expressing wild-type or mutant PrPs from the endogenous promoter, nor were these neurons more susceptible to proteasome inhibitor toxicity than neurons from PrP knock-out mice. Our analysis fails to confirm the previous observation that mislocation of PrP in the cytosol is neurotoxic, and argues against the hypothesis that perturbation of PrP metabolism through the proteasomal pathway plays a pathogenic role in prion diseases.  相似文献   

12.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   

13.
Aberrant metal binding by prion protein in human prion disease   总被引:9,自引:0,他引:9  
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker.  相似文献   

14.
The prion protein (PrP), a glycolipid-anchored membrane glycoprotein, contains a conserved hydrophobic sequence that can span the lipid bilayer in either direction, resulting in two transmembrane forms designated (Ntm)PrP and (Ctm)PrP. Previous studies have shown that the proportion of (Ctm)PrP is increased by mutations in the membrane-spanning segment, and it has been hypothesized that (Ctm)PrP represents a key intermediate in the pathway of prion-induced neurodegeneration. To further test this idea, we have surveyed a number of mutations associated with familial prion diseases to determine whether they alter the proportions of (Ntm)PrP and (Ctm)PrP produced in vitro, in transfected cells, and in transgenic mice. For the in vitro experiments, PrP mRNA was translated in the presence of murine thymoma microsomes which, in contrast to the canine pancreatic microsomes used in previous studies, are capable of efficient glycolipidation. We confirmed that mutations within or near the transmembrane domain enhance the formation of (Ctm)PrP, and we demonstrate for the first time that this species contains a C-terminal glycolipid anchor, thus exhibiting an unusual, dual mode of membrane attachment. However, we find that pathogenic mutations in other regions of the molecule have no effect on the amounts of (Ctm)PrP and (Ntm)PrP, arguing against the proposition that transmembrane PrP plays an obligate role in the pathogenesis of prion diseases.  相似文献   

15.
Antibodies to the prion protein (PrP) have been critical to the neuropathological and biochemical characterization of PrP-related degenerative diseases in humans and animals. Although PrP is highly conserved evolutionarily, there is some sequence divergence among species; as a consequence, anti-PrP antibodies have a wide spectrum of reactivity when challenged with PrP from diverse species. We have produced an antibody [monoclonal antibody (mAb) 2-40] raised against a synthetic peptide corresponding to residues (106-126 of human PrP and have characterized it by epitope mapping, Western immunoblot analysis, and immunohistochemistry. The antibody recognizes not only human PrP isoforms but also pathological PrP from all species tested (i.e., sheep, hamsters, and mice). Together with the fact that it recognizes the whole PrP in both cellular and scrapie isoforms, mAb 2-40 may be helpful in studying conformational changes of the PrP, as well as establishing a possible connection between human and animal diseases.  相似文献   

16.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

17.
PrP(C) is a glycosylphosphatidylinositol (GPI) anchored glycoprotein of unknown function. Misfolding of normal cellular PrP(C) to the pathogenic PrP(Sc) is the hallmark of prion diseases (transmissible spongiform encephalopathies). Prion diseases are characterized by extensive neurodegeneration and early death. Understanding how PrP(C) maintains its correct conformation is a major endeavor of current inquiry. Here we demonstrate a novel interaction between PrP(C) and the J protein family member, Rdj2 (DjA2; Dj3, Dnj3, Cpr3, and Hirip4). The importance of the J protein family in the cellular folding machinery has been recognized for many years. The PrP(C)/Rdj2 association was direct and concentration-dependent. Other J proteins such as CSPalpha and auxilin did not associate with PrP(C) in the absence of ATP, demonstrating the specificity of the PrP(C)/J protein interaction. These findings suggest that the J protein family serves as a 'folding catalyst' for PrP(C) and implicates Rdj2 as a factor in the protection against prion diseases.  相似文献   

18.
The pathogenic mechanisms leading from mutations in the prion protein (PrP) gene to infectious disease are not understood. To investigate the possibility that cellular processing of mutant prion protein may contribute to the formation of infectious particles, a mouse PrP model system has been established using the green fluorescent protein. Three novel PrP mutants were examined employing this model system and compared with wild type as well as known mutant PrPs. Two Creutzfeldt-Jakob disease-associated PrP mutants, PrP T188K and PrP T188R, revealed a secretory pathway to the cell membrane and PrP(Sc)-like properties, i.e. enhanced proteinase K resistance and detergent insolubility similar to other mutant PrPs associated with familial prion diseases. Moreover, a recently described disease-related truncated PrP mutant, PrP Q160(Stop), showed an almost exclusive localization in the nucleus and a catabolism along the proteasomal pathway. Therefore, various distinct pathological mechanisms may cause prion diseases, and aberrant cellular processing may be included in the pathogenesis of prion diseases.  相似文献   

19.
The cellular prion protein (PrP(C)) is critical for the development of prion diseases. However, the physiological role of PrP(C) is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrP(C) is cleaved at the end of the copper-binding octapeptide repeats through the action of reactive oxygen species (ROS), a process termed beta-cleavage. Here we show that ROS-mediated beta-cleavage of cell surface PrP(C) occurs within minutes and was inhibited by the hydroxyl radical quencher dimethyl sulfoxide and by an antibody against the octapeptide repeats. A construct of PrP lacking the octapeptide repeats, PrPDeltaoct, failed to undergo ROS-mediated beta-cleavage, as did two mutant forms of PrP, PG14 and A116V, associated with human prion diseases. As compared with cells expressing wild type PrP, when challenged with H2O2 and Cu2+, cells expressing PrPdeltaoct, PG14, or A116V had reduced viability and glutathione peroxidase activity and increased intracellular free radicals. Thus, lack of ROS-mediated beta-cleavage of PrP correlated with the sensitivity of the cells to oxidative stress. These data indicate that the beta-cleavage of PrP(C) is an early and critical event in the mechanism by which PrP protects cells against oxidative stress.  相似文献   

20.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号