共查询到20条相似文献,搜索用时 9 毫秒
1.
Malik KU Jennings BL Yaghini FA Sahan-Firat S Song CY Estes AM Fang XR 《Prostaglandins & other lipid mediators》2012,98(3-4):69-74
The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. 相似文献
2.
Preferential induction of cytochrome P450 1A1 over cytochrome P450 1B1 in human breast epithelial cells following exposure to quercetin 总被引:1,自引:0,他引:1
Mense SM Chhabra J Bhat HK 《The Journal of steroid biochemistry and molecular biology》2008,110(1-2):157-162
Estrogen metabolism is suggested to play an important role in estrogen-induced breast carcinogenesis. Epidemiologic studies suggest that diets rich in phytoestrogens are associated with a reduced risk of breast cancer. Phytoestrogens are biologically active plant compounds that structurally mimic 17beta-estradiol (E(2)). We hypothesize that phytoestrogens, may provide protection against breast carcinogenesis by altering the expression of estrogen-metabolizing enzymes cytochrome P450 1A1 (Cyp1A1) and 1B1 (Cyp1B1). Cyp1A1 and Cyp1B1 are responsible for the metabolism of E(2) to generate 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)), respectively. Studies suggest that 2-OHE(2) and 2-methoxyestradiol may protect against breast carcinogenesis, while 4-OHE(2) is carcinogenic in rodent models. Thus, agents that increase the metabolism of E(2) by Cyp1A1 to produce 2-OHE(2) may have chemoprotective properties. The human immortalized non-neoplastic breast cell line MCF10F was treated with quercetin at 10 and 50muM concentrations for time points ranging from 3 to 48h. Total RNA and protein were isolated. Real-time PCR was used to measure the expression of Cyp1A1 and Cyp1B1 mRNA. Quercetin treatment produced differential regulation of Cyp1A1 and Cyp1B1 mRNA expression in a time- and dose-dependent manner. Treatment with 10 and 50 microM doses of quercetin produced 6- and 11-times greater inductions of Cyp1A1 mRNA over Cyp1B1 mRNA, respectively. Furthermore, quercetin dramatically increased Cyp1A1 protein levels and only slightly increased Cyp1B1 protein levels in MCF10F cells. Thus, our data suggest that phytoestrogens may provide protection against breast cancer by modulating expression of estrogen-metabolizing genes such that production of the highly carcinogenic estrogen metabolite 4-OHE(2) by Cyp1B1 is reduced and the production of the less genotoxic 2-OHE(2) by Cyp1A1 is increased. 相似文献
3.
Karlgren M Backlund M Johansson I Oscarson M Ingelman-Sundberg M 《Biochemical and biophysical research communications》2004,315(3):679-685
A novel human cytochrome P450 cDNA designated CYP2U1 was identified using homology searches, and the corresponding gene is located on chromosome 4. The deduced 544 amino acid sequence displays up to 39% identity to other CYP2 family members, with closest resemblance to CYP2R1 and is highly conserved between species. CYP2U1 shows some structural differences compared to other CYP2 family members. The gene has only five exons and the enzyme harbors two insertions in the N-terminal region. Northern blot analysis revealed high mRNA expression in human thymus, with weaker expression in heart and brain, whereas in the rat similar mRNA levels were detected in thymus and brain. Western blot analysis revealed much higher CYP2U1 protein expression in rat brain than in thymus, particularly in limbic structures and in cortex. The physiological and toxicological role of this novel P450 is still unknown, but the selective tissue distribution suggests an important endogenous function. 相似文献
4.
A three-dimensional structure for human cytochrome P450IA1 was predicted based on the crystal coordinates of cytochrome P450cam from Pseudomonas putida. As there was only 15% residue identity between the two enzymes, additional information was used to establish an accurate sequence alignment that is a prerequisite for model building. Twelve representative eukaryotic sequences were aligned and a net prediction of secondary structure was matched against the known alpha-helices and beta-sheets of P450cam. The cam secondary structure provided a fixed main-chain framework onto which loops of appropriate length from the human P450IA1 structure were added. The model-built structure of the human cytochrome conformed to the requirements for the segregation of polar and nonpolar residues between the core and the surface. The first 44 residues of human cytochrome P450 could not be built into the model and sequence analysis suggested that residues 1-26 formed a single membrane-spanning segment. Examination of the sequences of cytochrome P450s from distinct gene families suggested specific residues that could account for the differences in substrate specificity. A major substrate for P450IA1, 3-methyl-cholanthrene, was fitted into the proposed active site and this planar aromatic molecule could be accommodated into the available cavity. Residues that are likely to interact with the haem were identified. The sequence similarity between 59 eukaryotic enzymes was represented as a dendrogram that in general clustered according to gene family. Until a crystallographic structure is available, this model-building study identifies potential residues in cytochrome P450s important in the function of these enzymes and these residues are candidates for site-directed mutagenesis. 相似文献
5.
S100P: a novel therapeutic target for cancer 总被引:1,自引:0,他引:1
S100P expression is described in many different cancers, and its expression is associated with drug resistance, metastasis,
and poor clinical outcome. S100P is member of the S100 family of small calcium-binding proteins that have been reported to
have either intracellular or extracellular functions, or both. Extracellular S100P can bind with the receptor for advanced
glycation end products (RAGE) and activate cellular signaling. Through RAGE, S100P has been shown to mediate tumor growth,
drug resistance, and metastasis. S100P is specifically expressed in cancer cells in the adult. Therefore, S100P is a useful
marker for differentiating cancer cells from normal cells, and can aid in the diagnosis of cancer by cytological examination.
The expression of S100P in cancer cells has been related to hypomethylation of the gene. Multiple studies have confirmed the
beneficial effects of blocking S100P/RAGE in cancer cells, and different blockers are being developed including small molecules
and antagonist peptides. This review summarizes the role and significance of S100P in different cancers. 相似文献
6.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved. 相似文献
7.
We investigated the interaction of human P450 1B1 (CYP1B1) with various phospholipid bilayers using the N-terminally deleted (Δ2-4)CYP1B1 and (Δ2-26)CYP1B1 enzymes. Among anionic phospholipids, phosphatidic acid (PA) and cardiolipin specifically increased the catalytic activities, membrane binding affinities, and thermal stabilities of both CYP1B1 proteins when phosphatidylcholine matrix was gradually replaced with these anionic phospholipids. PA- or cardiolipin-dependent changes of CYP1B1 conformation were revealed by altered Trp fluorescence and CD spectra. However, both PA and cardiolipin exerted more significant effects with the (Δ2-4)CYP1B1 than the (Δ2-26)CYP1B1 implying the functional importance of N-terminal region for the interaction with the phospholipid membranes. In contrast, other anionic phospholipids such as phosphatidylserine and the neutral phospholipid phosphatidylethanolamine had no apparent effects on the catalytic activity or conformation of CYP1B1. These data suggest that the chemical and physical properties of membranes influenced by PA or cardiolipin composition are critical for the functional roles of CYP1B1. 相似文献
8.
Phosphorylation of cytochrome P450: regulation by cytochrome b5 总被引:1,自引:0,他引:1
P M Epstein M Curti I Jansson C K Huang J B Schenkman 《Archives of biochemistry and biophysics》1989,271(2):424-432
Rabbit liver cytochrome P450 LM2 and several forms of rat liver cytochrome P450 are phosphorylated by cAMP-dependent protein kinase (PKA) and by protein kinase C. Under aqueous assay conditions at neutral pH LM2 is phosphorylated only to a maximum extent of about 20 mol% by PKA. We show that detergents or alkaline pH greatly enhance the extent of phosphorylation of the cytochrome P450 substrates of cAMP-dependent protein kinase. In the presence of 0.05% Emulgen, PBRLM5, which appears to be the best cytochrome P450 substrate for cAMP-dependent protein kinase, incorporates phosphate up to about 84 mol% of enzyme. We reported previously (I. Jansson et al. (1987) Arch. Biochem. Biophys. 259, 441-448) that cytochrome b5 inhibits the phosphorylation of LM2 by cAMP-dependent protein kinase. In this paper, using PBRLM5, we demonstrate, by analysis of initial rates, that the inhibition of phosphorylation by cytochrome b5 is competitive, with a Ki = 0.48 microM. We also show that a number of forms of cytochrome P450 can be phosphorylated by protein kinase C, and that the phosphorylation of these forms by protein kinase C is also inhibited by cytochrome b5. These data suggest that the phosphorylation site(s) of cytochromes P450 may be located within or overlap the cytochrome b5 binding domain of the enzymes. 相似文献
9.
Cheng J Wan DF Gu JR Gong Y Yang SL Hao DC Yang L 《Protein expression and purification》2006,47(2):467-476
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro. 相似文献
10.
A novel human cytochrome P450 gene (P450IIB): chromosomal localization and evidence for alternative splicing. 总被引:1,自引:2,他引:1 下载免费PDF全文
J S Miles N K Spurr A C Gough T Jowett A W McLaren J D Brook C R Wolf 《Nucleic acids research》1988,16(13):5783-5795
We have isolated from a single human liver cDNA library two clones which are highly homologous (78% over the coding region) to the major phenobarbital-inducible P450 from rat (P450IIB1). This is the first direct demonstration of the presence of the P450IIB gene subfamily in humans. This subfamily is much less extensive than the rodent homologues, but does appear to contain at least two genes. Of the cDNA clones isolated one is apparently normally spliced, whereas the other lacks exon 8 and retains all or part of intron 5. Both clones contain transcribed Alu sequences. The human P450IIB gene has been located to chromosome 19q12----19q13.2 using a probe derived from intron 5, and is close to the CYP 2A locus encoding cytochrome P450IIA2. Restriction fragment length polymorphisms have been found with the enzymes BamHI and MspI which will enable linkage to be determined between these two loci. 相似文献
11.
In contrast to the well-known regulation of cytochrome P450 (CYP) activity by enzyme induction, which represents a process with slow onset and slow offset, more recent studies revealed phosphorylation as a fast (within observation instantaneous) and isoenzyme-selective regulation. The phosphorylated enzyme (investigated isozyme: CYP2B1) was fully inactive. The phosphorylation is mediated by PKA and hence under control of hormones and drugs that alter cellular cAMP levels. The consequences for the metabolic control of toxic species derived from drugs and environmental carcinogens are discussed. This information will help to improve therapy with drugs metabolized by CYPs which are phosphorylated by PKA, especially if these drugs possess a narrow window between required effectiveness and unacceptable toxicity. 相似文献
12.
Human cytochrome P450(CYP 450) enzymes mediate over 60% of the phase I-dependent metabolism of clinical drugs. They are also known for the polymorphism functions that have significant impacts on the enzyme activities. In this study, a web-server called SCYPPred was developed for predicting human cytochrome P450 SNPs (Single Nucleotide Polymorphisms) based on the SVM flanking sequence method; SCYPPred can rapidly yield the desired results by using the amino acid sequences information alone. The web-server is accessible to the public at http://snppred.sjtu.edu.cn. Hopefully SCYPPred could be a useful bioinformatics tool for elucidating the mutation probability of a specific CYP450 enzyme. 相似文献
13.
Bandhuvula P Honbo N Wang GY Jin ZQ Fyrst H Zhang M Borowsky AD Dillard L Karliner JS Saba JD 《American journal of physiology. Heart and circulatory physiology》2011,300(5):H1753-H1761
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P? and S1P? receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury. 相似文献
14.
《Journal of Molecular Catalysis .B, Enzymatic》2010,64(3-4):179-187
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants. 相似文献
15.
tert-Butyl acetylene (tBA) is a mechanism-based inactivator of cytochromes P450 2E1 and 2E1 T303A; however, the inactivation of the T303A mutant could be reversed by overnight dialysis. The inactivation of P450 2E1 T303A, but not the wild-type 2E1 enzyme, by tBA resulted in the formation of a novel reversible acetylene-iron spectral intermediate with an absorption maximum at 485 nm. The formation of this intermediate required oxygen and could be monitored spectrally with time. Although the alternate oxidants tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP) supported the inactivation of wild-type P450 2E1 by tBA in a reductase- and NADPH-free system, only tBHP supported the inactivation of the 2E1 T303A mutant. The losses in enzymatic activity occurred concomitantly with losses in the native P450 heme, which were accompanied by the formation of tBA-adducted heme products. The inactivations supported by tBHP and CHP were completely irreversible with overnight dialysis. Spectral binding constants (K(s)) for the binding of tBA to the 2E1 P450s together with models of the enzymes with the acetylenic inactivator bound in the active site suggest that the T303A mutation results in increased hydrophobic interactions between tBA and nearby P450 residues, leading to a higher binding affinity for the acetylene compound in the mutant enzyme. Together, these data support a role for the highly conserved T303 residue in proton delivery to the active site of P450 2E1 and in the inactivation of the 2E1 P450s by small acetylenic compounds. 相似文献
16.
17.
18.
Namandjé N. Bumpus 《Journal of inorganic biochemistry》2010,104(4):485-691
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in 18O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many 18O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase. 相似文献
19.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献
20.
Expression and regulation of cytochrome P450 enzymes in primary cultures of human hepatocytes 总被引:5,自引:0,他引:5
LeCluyse E Madan A Hamilton G Carroll K DeHaan R Parkinson A 《Journal of biochemical and molecular toxicology》2000,14(4):177-188
The aim of this study was to test suitable culture conditions for maintaining normal cellular cytoarchitecture and inducibility of P450 enzymes in primary cultures of human hepatocytes by prototypical inducers. The selectivity and sensitivity of a sandwich culture system were determined by treating cultures with a number of clinically relevant drugs that are known to be inducers of either rodent and/or human P450 enzymes. The results showed that considerable induction of CYP3A4 activity is observed at DMSO concentrations greater than 0.1% (v/v). No differences in P450 induction response were observed between cultures maintained under different matrix conditions. However, the matrix condition considered to be optimal for maintaining cellular integrity, protein yields, and P450 enzyme induction was a sandwich configuration in combination with modified Chee's medium containing insulin (6.25 microg/mL) and dexamethasone (< or =0.1 microM). Under these conditions, induction of CYP3A4 occurred at clinically relevant drug concentrations, and maximal activities were achieved after 3 days of exposure. Overall, the response of human hepatocyte cultures to treatment with both positive and negative modulators was found to reflect that observed in vivo with respect to both enzyme specificity and potency of enzyme induction, although considerable sample-to-sample variability was observed in the magnitude of induction. 相似文献