首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the circulation, flow-responsive endothelial cells (ECs) lining the lumen of blood vessels are continuously exposed to complex hemodynamic forces. To increase our understanding of EC response to these dynamic shearing forces, a novel in vitro flow model was developed to simulate pulsatile shear stress waveforms encountered by the endothelium in the arterial circulation. A modified waveform modeled after flow patterns in the human abdominal aorta was used to evaluate the biological responsiveness of human umbilical vein ECs to this new type of stimulus. Arterial pulsatile flow for 24 hours was compared to an equivalent time-average steady laminar shear stress, using no flow (static) culture conditions as a baseline. While both flow stimuli induced comparable changes in cell shape and alignment, distinct patterns of responses were observed in the distribution of actin stress fibers and vinculin-associated adhesion complexes, intrinsic migratory characteristics, and the expression of eNOS mRNA and protein. These results thus reveal a unique responsiveness of ECs to an arterial waveform and begin to elucidate the complex sensing capabilities of the endothelium to the dynamic characteristics of flows throughout the human vascular tree.  相似文献   

2.
The shear stresses derived from blood flow regulate many aspects of vascular and immunobiology. In vitro studies on the shear stress‐mediated mechanobiology of endothelial cells have been carried out using systems analogous to the cone‐and‐plate viscometer in which a rotating, low‐angle cone applies fluid shear stress to cells grown on an underlying, flat culture surface. We recently developed a device that could perform high‐throughput studies on shear‐mediated mechanobiology through the rotation of cone‐tipped shafts in a standard 96‐well culture plate. Here, we present a model of the three‐dimensional flow within the culture wells with a rotating, cone‐tipped shaft. Using this model we examined the effects of modifying the design parameters of the system to allow the device to create a variety of flow profiles. We first examined the case of steady‐state flow with the shaft rotating at constant angular velocity. By varying the angular velocity and distance of the cone from the underlying plate we were able to create flow profiles with controlled shear stress gradients in the radial direction within the plate. These findings indicate that both linear and non‐linear spatial distributions in shear stress can be created across the bottom of the culture plate. In the transition and “parallel shaft” regions of the system, the angular velocities needed to provide high levels of physiological shear stress (5 Pa) created intermediate Reynolds number Taylor‐Couette flow. In some cases, this led to the development of a flow regime in which stable helical vortices were created within the well. We also examined the system under oscillatory and pulsatile motion of the shaft and demonstrated minimal time lag between the rotation of the cone and the shear stress on the cell culture surface. Biotechnol. Bioeng. 2013; 110: 1782–1793. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
To study the effect of fluid shear stress on cultured endothelial cells, we have developed an apparatus for the stress creation, which consists of a stainless steel disk driven by an electric DC motor and a stage to place a culture dish and to adjust the distance between the disk and the dish. When the disk is rotated, a concentric fluid movement occurs in the culture medium in the dish and exerts the shear stress on the endothelial cells cultured on the bottom of the dish. A theoretical analyses concerning the induced concentric flow velocity predicted that when the angular velocity of the disk rotation (omega) is slow enough to maintain a Reynolds' number of the order of 10, the exerted wall shear stress tau w on the endothelial cell monolayer is given for a constant as tau w = mu r omega/d where mu is the viscosity of the medium, d the distance from the plate to the monolayer and r the radial distance from the center of the dish. When omega is varied in a sinusoidal mode tau w also becomes sinusoidal, thus allowing to apply a pulsatile stress. In vitro experiments carried out to examine the validity of the theoretical results, using a suspension of polystyrene as a tracer with the ordinary culture medium and 99% ethanol, revealed excellent agreement of the measured velocity profiles with the predicted ones. The results demonstrated that the present apparatus can create both the steady and pulsatile wall shear stress on the culture cell layer as expected, unless Reynolds' number greatly exceeds the level of 10.  相似文献   

4.
Steady shear stress stimulates transient hyperpolarization coupled to calcium-sensitive potassium (KCa) channels and sustained depolarization linked to chloride-selective channels. Physiological flow is pulsatile not static, and whereas in vivo data suggest phasic shear stress may preferentially activate KCa channels, its differential effects on both currents remain largely unknown. To determine this interaction, coronary endothelial cells were cultured in glass capillary flow tubes, loaded with the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol, and exposed to constant or pulsatile shear stress. The latter was generated by a custom servoperfusion system employing physiological pressure and flow waveforms. Steady shear induced a sustained depolarization inhibited by the Cl- channel blocker DIDS. Even after exposure to steady flow, subsequent transition to pulsatile shear stress further stimulated DIDS-sensitive depolarization. DIDS pretreatment "unmasked" a pulsatile flow-induced hyperpolarization of which magnitude was further enhanced by nifedipine, which augments epoxygenase synthesis. Pulse-shear hyperpolarization was fully blocked by KCa channel inhibition (charybdotoxin + apamin), although these agents had no influence on membrane potential altered by steady flow. Thus KCa-dependent hyperpolarization is preferentially stimulated by pulsatile over steady flow, whereas both can stimulate Cl--dependent depolarization. This supports studies showing greater potency of pulsatile flow for triggering KCa-dependent vasorelaxation.  相似文献   

5.
Effects of pulsatile flow on cultured vascular endothelial cell morphology   总被引:17,自引:0,他引:17  
Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside. In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress. However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 +/- 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 +/- 40 and 10 +/- 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 +/- 20 and 0 +/- 40 dynes/cm2 (type III). The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term. For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours. For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows. These results demonstrate that EC can discriminate between different types of pulsatile flow environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation.  相似文献   

7.
Molecular basis of the effects of shear stress on vascular endothelial cells   总被引:18,自引:0,他引:18  
Li YS  Haga JH  Chien S 《Journal of biomechanics》2005,38(10):1949-1971
Blood vessels are constantly exposed to hemodynamic forces in the form of cyclic stretch and shear stress due to the pulsatile nature of blood pressure and flow. Endothelial cells (ECs) are subjected to the shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular functions, e.g., proliferation, apoptosis, migration, permeability, and remodeling, as well as gene expression. The ECs use multiple sensing mechanisms to detect changes in mechanical forces, leading to the activation of signaling networks. The cytoskeleton provides a structural framework for the EC to transmit mechanical forces between its luminal, abluminal and junctional surfaces and its interior, including the cytoplasm, the nucleus, and focal adhesion sites. Endothelial cells also respond differently to different modes of shear forces, e.g., laminar, disturbed, or oscillatory flows. In vitro studies on cultured ECs in flow channels have been conducted to investigate the molecular mechanisms by which cells convert the mechanical input into biochemical events, which eventually lead to functional responses. The knowledge gained on mechano-transduction, with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes in vascular remodeling and adaptation in health and disease.  相似文献   

8.
Virtually all cells accommodate to their mechanical environment. In particular, cells subject to flow respond to rapid changes in fluid shear stress (SS), cyclic stretch (CS), and pressure. Recent studies have focused on the effect of pulsatility on cellular behavior. Since cells of many different tissue beds are constantly exposed to fluid flows over a narrow range of frequencies, we hypothesized that an intrinsic flow frequency that is optimal for determining cell phenotype exists. We report here that cells from various tissue beds (bovine aortic endothelial cells (BAEC), rat small intestine epithelial cells (RSIEC), and rat lung epithelial cells (RLEC)) proliferate maximally when cultured in a perfusion bioreactor under pulsatile conditions at a specific frequency, independent of the applied SS. Vascular endothelial and pulmonary epithelial cell proliferation peaked under 1 Hz pulsatile flow. In contrast, proliferation of gastrointestinal cells, which in their physiological context are subject to no flow or higher wavelength signal, was maximum at 0.125 Hz or under no flow. Moreover, exposure of BAEC to pulsatile flow of varying frequency influenced their nitric oxide synthase activity and prostacyclin production, which reached maximum values at 1 Hz. Notably, the "optimal" frequencies for the cell types examined correspond to the physiologic operating range of the organs from where they were initially derived. These findings suggest that frequency, independent of shear, is an essential determinant of cell response in pulsatile environments.  相似文献   

9.
Fluid-induced shear stresses are involved in the development of cardiovascular tissues. In a tissue engineering framework, this stimulus has also been considered as a mechanical regulator of stem cell differentiation. We recently demonstrated that the fluid-oscillating effect in combination with a physiologically-relevant shear stress magnitude contributes to the formation of stem cell-derived de novo heart valve tissues. However, the range of oscillations necessary to induce favorable gene expression and engineered tissue formation is unknown. In this study, we took a computational approach to establish a range of oscillatory shear stresses that may optimize in vitro valvular tissue growth. Taking a biomimetic approach, three physiologically-relevant flow waveforms from the human: (i) aorta, (ii) pulmonary artery and (iii) superior vena cava were utilized to simulate pulsatile flow conditions within a bioreactor that housed 3 tissue specimens. Results were compared to non-physiological pulsatile flow (NPPF) and cyclic flexure-steady flow (Flex-Flow) conditions. The oscillatory shear index (OSI) was used to quantify the fluid-induced oscillations occurring on the specimen surfaces. The range of mean OSI under the physiological conditions investigated was found to be 0.18 ≤ OSI ≤ 0.23. On the other hand, NPPF and Flex-Flow environments yielded a mean OSI of 0.37 and 0.11 respectively, which were 46% higher and 45% lower than physiological conditions. Moreover, we subsequently conducted OSI-based human bone marrow stem cell (HBMSC) culture experiments which resulted in preferential valvular gene expression and phenotype (significant upregulation of BMP, KLF2A, CD31 and α-SMA using an OSI of 0.23 in comparison to a lower OSI of 0.10 or a higher OSI of 0.38; p < .05). These findings suggest that a distinct range or a “sweet-spot” for physiological OSI exists in the mechanical conditioning of tissue engineered heart valves grown from stem cell sources. We conclude that in vitro heart valve matrix development could be further enhanced by simultaneous exposure of the engineered tissues to physiologically-relevant magnitudes of both fluid-induced oscillations and shear stresses.  相似文献   

10.
Although activation of outward rectifying Cl(-) channels is one of the fastest responses of endothelial cells (ECs) to shear stress, little is known about these channels. In this study, we used whole-cell patch clamp recordings to characterize the flow-activated Cl(-) current in bovine aortic ECs (BAECs). Application of shear stress induced rapid development of a Cl(-) current that was effectively blocked by the Cl(-) channel antagonist 5-nitro-2-(3-phenopropylamino)benzoic acid (100 microM). The current initiated at a shear stress as low as 0.3 dyne/cm(2), attained its peak within minutes of flow onset, and saturated above 3.5 dynes/cm(2) approximately 2.5-3.5-fold increase over pre-flow levels). The Cl(-) current desensitized slowly in response to sustained flow, and step increases in shear stress elicited increased current only if the shear stress levels were below the 3.5 dynes/cm(2) saturation level. Oscillatory flow with a physiological oscillation frequency of 1 Hz, as occurs in disturbed flow zones prone to atherosclerosis, failed to elicit the Cl(-) current, whereas lower oscillation frequencies led to partial recovery of the current. Nonreversing pulsatile flow, generally considered protective of atherosclerosis, was as effective in eliciting the current as steady flow. Measurements using fluids of different viscosities indicated that the Cl(-) current is responsive to shear stress rather than shear rate. Blocking the flow-activated Cl(-) current abolished flow-induced Akt phosphorylation in BAECs, whereas blocking flow-sensitive K(+) currents had no effect, suggesting that flow-activated Cl(-) channels play an important role in regulating EC flow signaling.  相似文献   

11.
Shear stress is an important physical factor that regulates proliferation, migration, and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging readouts of the flow field.  相似文献   

12.
Flush-mounted hot film anemometer accuracy in pulsatile flow   总被引:2,自引:0,他引:2  
The accuracy of a flush-mounted hot film anemometer probe for wall shear stress measurements in physiological pulsatile flows was evaluated in fully developed pulsatile flow in a rigid straight tube. Measured wall shear stress waveform based on steady flow anemometer probe calibrations were compared to theoretical wall shear stress waveforms based on well-established theory and measured flow rate waveforms. The measured and theoretical waveforms were in close agreement during systole (average deviation of 14 percent at peak systole). As expected, agreement was poor during diastole because of flow reversal and diminished frequency response at low shear rate.  相似文献   

13.
The vascular endothelium is a dynamic cellular interface between the vessel wall and the bloodstream, where it regulates the physiological effects of humoral and biomechanical stimuli on vessel tone and remodeling. With respect to the latter hemodynamic stimulus, the endothelium is chronically exposed to mechanical forces in the form of cyclic circumferential strain, resulting from the pulsatile nature of blood flow, and shear stress. Both forces can profoundly modulate endothelial cell (EC) metabolism and function and, under normal physiological conditions, impart an atheroprotective effect that disfavors pathological remodeling of the vessel wall. Moreover, disruption of normal hemodynamic loading can be either causative of or contributory to vascular diseases such as atherosclerosis. EC-matrix interactions are a critical determinant of how the vascular endothelium responds to these forces and unquestionably utilizes matrix metalloproteinases (MMPs), enzymes capable of degrading basement membrane and interstitial matrix molecules, to facilitate force-mediated changes in vascular cell fate. In view of the growing importance of blood flow patterns and mechanotransduction to vascular health and pathophysiology, and considering the potential value of MMPs as therapeutic targets, a timely review of our collective understanding of MMP mechanoregulation and its impact on the vascular endothelium is warranted. More specifically, this review primarily summarizes our current knowledge of how cyclic strain regulates MMP expression and activation within the vascular endothelium and subsequently endeavors to address the direct and indirect consequences of this on vascular EC fate. Possible relevance of these phenomena to vascular endothelial dysfunction and pathological remodeling are also addressed.  相似文献   

14.
Park JY  Yoo SJ  Patel L  Lee SH  Lee SH 《Biorheology》2010,47(3-4):165-178
Slow interstitial flow can lead to large changes in cell morphology. Since conventional biological assays are adapted to two-dimensional culture protocols, there is a need to develop a microfluidic system that can generate physiological levels of interstitial flow. Here we developed a system that uses a passive osmotic pumping mechanism to generate sustained and steady interstitial flows for two-dimensional cultures. Two different cell types, fibroblasts and mesenchymal stem cells, were selected because they are generally exposed to interstitial flow. To quantify the cellular response to interstitial shear flow in terms of proliferation and alignment, 4 rates of flow were applied. We found that the proliferation rate of fibroblasts varied linearly with wall shear stress. In addition, alignment of fibroblast cells depended linearly on the magnitude of the shear stress, whereas mesenchymal stem cells were aligned regardless of the magnitude of shear stress. This suggested that mesenchymal stem cells are very sensitive to shear stresses, even at levels generated by interstitial flow. The results presented here emphasize the need to consider the mechanosensitivity and the natural role of different cell types when evaluating their responses to fluid flow.  相似文献   

15.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

16.

In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50 h Re m h 300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure ( p w ), wall shear stress ( w ), Wall Shear Stress Gradient (WSSG), time-average wall shear stress ( w *), and time-average Wall Shear Stress Gradient WSSG *. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

17.
It has been extensively documented that changes in blood flow induce vascular remodeling and this phenomenon seems to be correlated to the shear forces imposed on the vessel wall by motion of blood. Wall shear stress, the tractive force that acts on the endothelium, has been shown to influence endothelial cell function. To study changes in wall shear stress that develop on the vessel wall upon changes of blood flow, we set up a technique that allows estimation of shear stress in the radial artery of patients on chronic hemodialysis therapy. The technique is based on color-flow Doppler examination of the radial artery before and after surgical creation of radiocephalic fistula for hemodialysis. Calculation of time function wall shear stress and blood flow rate in the radial artery is performed on the basis of arterial diameter, center-line velocity waveform and blood viscosity, using a numerical method developed according to Womersley's theory for pulsatile flow in tubes. The results presented confirm that the model developed is suitable for calculation of the wall shear stress that develops in the radial artery of patients before and after surgical creation of an arteriovenous fistula for hemodialysis. This methodology was developed for characterization of wall shear stress in the radial artery but may be well applied to other vessels that can be examined by echo-Doppler technique.  相似文献   

18.
Cellular mechanics and gene expression in blood vessels   总被引:12,自引:0,他引:12  
  相似文献   

19.
20.
Shear stress induced stimulation of mammalian cell metabolism   总被引:19,自引:0,他引:19  
A flow apparatus has been developed for the study of the metabolic response of anchorage-dependent cells to a wide range of steady and pulsatile shear stresses under well-controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/cm(2), and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. This study demonstrates that shear stress in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号