首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Patel  I Taylor  C F Dutta  G Kneale  K Firman 《Gene》1992,112(1):21-27
We have cloned the genes coding for the two subunits (HsdM and HsdS) of the type-I DNA methyltransferase (MTase), M.EcoR124, into the specially constructed expression vector, pJ119. These subunits have been synthesized together as an intact MTase. We have also cloned the individual subunit-encoding genes under the control of the T7 gene 10 promoter or the lacUV5 promoter. High levels of expression have been obtained in all cases. While HsdM was found to be soluble, HsdS was insoluble. However, in the presence of the co-produced HsdM subunit, HsdS was found in the soluble fraction as part of an active MTase. We have partially purified the cloned multi-subunit enzyme and shown that it is capable of DNA methylation both in vivo and in vitro.  相似文献   

2.
I A Taylor  K G Davis  D Watts    G G Kneale 《The EMBO journal》1994,13(23):5772-5778
The type IC DNA methyltransferase M.EcoR124I is a complex multisubunit enzyme that recognizes the non-palindromic DNA sequence GAAN6RTCG. Small angle X-ray scattering has been used to investigate the solution structure of the methyltransferase and of complexes of the enzyme with unmethylated and hemimethylated 30 bp DNA duplexes containing the specific recognition sequence. A major change in the quaternary structure of the enzyme is observed following DNA binding, based on a decrease in the radius of gyration from 56 to 40 A and a reduction in the maximum dimension of the enzyme from 180 to 112 A. The structural transition observed is independent of the methylation state of the DNA. CD shows that there is no change in the secondary structure of the protein subunits when DNA is bound. In contrast, there is a large increase in the CD signal arising from the DNA, suggesting considerable structural distortion which may allow access to the bases targeted for methylation. We propose that DNA binding induces a large rotation of the two HsdM subunits towards the DNA, mediated by hinge bending domains in the specificity subunit HsdS.  相似文献   

3.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.  相似文献   

4.
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase-nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.  相似文献   

5.
Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction–modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of the Type IC M.EcoR124I DNA methyltransferase (MTase), comprising the HsdS subunit, two HsdM subunits, the cofactor AdoMet and the substrate DNA molecule. The structure was obtained by docking models of individual subunits generated by fold-recognition and comparative modelling, followed by optimization of inter-subunit contacts by energy minimization. The model of M.EcoR124I has allowed identification of a number of functionally important residues that appear to be involved in DNA-binding. In addition, we have mapped onto the model the location of several new mutations of the hsdS gene of M.EcoR124I that were produced by misincorporation mutagenesis within the central conserved region of hsdS, we have mapped all previously identified DNA-binding mutants of TRD2 and produced a detailed analysis of the location of surface-modifiable lysines. The model structure, together with location of the mutant residues, provides a better background on which to study protein–protein and protein–DNA interactions in Type I R-M systems.  相似文献   

6.
RsmE is the founding member of a new RNA methyltransferase (MTase) family responsible for methylation of U1498 in 16S ribosomal RNA in Escherichia coli. It is well conserved across bacteria and plants and may play an important role in ribosomal intersubunit communication. The crystal structure in monomer showed that it consists of two distinct but structurally related domains: the PUA (pseudouridine synthases and archaeosine‐specific transglycosylases)-like RNA recognition and binding domain and the conserved MTase domain with a deep trefoil knot. Analysis of small-angle X-ray scattering data revealed that RsmE forms a flexible dimeric conformation that may be essential for substrate binding. The S‐adenosyl‐l‐methionine (AdoMet)-binding characteristic determined by isothermal titration calorimetry suggested that there is only one AdoMet molecule bound in the subunit of the homodimer. In vitro methylation assay of the mutants based on the RsmE-AdoMet-uridylic acid complex model showed key residues involved in substrate binding and catalysis. Comprehensive comparisons of RsmE with closely related MTases, combined with the biochemical experiments, indicated that the MTase domain of one subunit in dimeric RsmE is responsible for binding of one AdoMet molecule and catalytic process while the PUA-like domain in the other subunit is mainly responsible for recognition of one substrate molecule (the ribosomal RNA fragment and ribosomal protein complex). The methylation process is required by collaboration of both subunits, and dimerization is functionally critical for catalysis. In general, our study provides new information on the structure-function relationship of RsmE and thereby suggests a novel catalytic mechanism.  相似文献   

7.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

8.
Biochemical and structural studies of the methylase from the type 1 1/2 R-M system AhdI require the ability to purify this multi-subunit enzyme in significant quantities in a soluble and active form. Several Escherichia coli expression systems were tested for their ability to produce the intact methylase but this could not be achieved in a simple co-expression system. Expression experiments were optimised to produce high yields of soluble M and S subunits as individual proteins. Temperature and conditions of induction proved to be the most useful factors and although purification of the S subunit was successful, an efficient strategy for the M subunit remained elusive. A novel strategy was developed in which individual subunits are expressed separately and the bacterial cells mixed before lysis. This method produced a high yield of the multi-subunit methylase when purified to homogeneity by means of heparin and size-exclusion chromatography. It was found to be essential, however, to remove tightly bound DNA by ammonium sulphate precipitation in 1 M NaCl. The intact methylase can now be consistently produced, avoiding the use of fusion proteins. The purified enzyme is stable over long time periods, unlike the individual subunits. This method may be of general application where the expression of multi-subunit proteins, or indeed their individual components, is problematic.  相似文献   

9.
The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3′ end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.  相似文献   

10.
Type I restriction–modification (R–M) systems are comprised of two multi-subunit enzymes with complementary functions: the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits, including HsdM. Characterisation of either enzyme first requires the expression and purification of its constituent subunits, before reconstitution of the multisubunit complex. Previously, purification of the HsdM protein had proved problematic, due to the length of time required for the purification and its susceptibility to degradation. A new protocol was therefore developed to decrease the length of time required to purify the HsdM protein and thus prevent degradation. Finally, we show that the HsdM subunit exhibits a concentration dependent monomer–dimer equilibrium.  相似文献   

11.
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5'-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95 degrees C and retained at least half the activity after 9 min at 95 degrees C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.  相似文献   

12.
AquI DNA methyltransferase, M.AquI, catalyses the transfer of a methyl group from S-adenosyl-L-methionine to the C5 position of the outermost deoxycytidine base in the DNA sequence 5'CYCGRG3'. M.AquI is encoded by two overlapping ORFs (termed alpha and beta) instead of the single ORF that is customary for Class II methyltransferase genes. The structural organization of the M.AquI protein sequence is quite similar to that of other bacterial C5-DNA methyltransferases. Ten conserved motifs are also present in the correct order, but only on two polypeptides. We separately subcloned the genes that encode the alpha and beta subunits of M.AquI into expression vectors. The overexpressed His-fusion alpha and beta subunits of the enzyme were purified to homogeneity in a single step by Nickel-chelate affinity chromatography. The purified recombinant proteins were assayed for biological activity by an in vitro DNA tritium transfer assay. The alpha and beta subunits of M.AquI alone have no DNA methyltransferase activity, but when both subunits are included in the assay, an active enzyme that catalyses the transfer of the methyl group from S-adenosyl-Lmethionine to DNA is reconstituted. We also showed that the beta subunit alone contains all of the information that is required to generate recognition of specific DNA duplexes in the absence of the alpha subunit  相似文献   

13.
RsrI DNA methyltransferase (M-RsrI) from Rhodobacter sphaeroides has been purified to homogeneity, and its gene cloned and sequenced. This enzyme catalyzes methylation of the same central adenine residue in the duplex recognition sequence d(GAATTC) as does M-EcoRI. The reduced and denatured molecular weight of the RsrI methyltransferase (MTase) is 33,600 Da. A fragment of R. sphaeroides chromosomal DNA exhibited M.RsrI activity in E. coli and was used to sequence the rsrIM gene. The deduced amino acid sequence of M.RsrI shows partial homology to those of the type II adenine MTases HinfI and DpnA and N4-cytosine MTases BamHI and PvuII, and to the type III adenine MTases EcoP1 and EcoP15. In contrast to their corresponding isoschizomeric endonucleases, the deduced amino acid sequences of the RsrI and EcoRI MTases show very little homology. Either the EcoRI and RsrI restriction-modification systems assembled independently from closely related endonuclease and more distantly related MTase genes, or the MTase genes diverged more than their partner endonuclease genes. The rsrIM gene sequence has also been determined by Stephenson and Greene (Nucl. Acids Res. (1989) 17, this issue).  相似文献   

14.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

15.
RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-N7-)-methyltransferase activities are associated with the vaccinia virus mRNA capping enzyme, a heterodimeric protein containing polypeptides of M(r) 95,000 and 31,000. Although the RNA triphosphatase and RNA guanylyltransferase domains have been localized to a M(r) 59,000 fragment of the capping enzyme large subunit, the location of the methyltransferase domain within the protein and the catalytic role of individual subunits in methyl group transfer remain unclear. In the present work, through the study of methyltransferase activity of truncated forms of capping enzyme translated in vitro in a rabbit reticulocyte lysate, we have localized the methyltransferase domain to a complex consisting of the small subunit and the carboxyl-terminal portion of the large subunit. The M(r) 31,000 subunit translated alone was not sufficient for methyltransferase activity. This requirement for both subunits may explain the tight physical association of the two polypeptides in vivo. We have recreated the association of the large and small enzyme subunits in vitro through the translation of synthetic mRNAs encoding the two polypeptides. Study of the ability of deleted versions of the large subunit to bind the small subunit, as detected by co-immunoprecipitation, defined a 347-amino acid carboxyl-terminal region of the large subunit that was sufficient for heterodimerization. Colocalization within the large subunit of the methyltransferase and subunit association domains suggests that dimerization of the subunits may be required for methyltransferase activity.  相似文献   

16.
We have cloned the M and S genes of the restriction-modification (R-M) system AhdI and have purified the resulting methyltransferase to homogeneity. M.AhdI is found to form a 170 kDa tetrameric enzyme having a subunit stoichiometry M2S2 (where the M and S subunits are responsible for methylation and DNA sequence specificity, respectively). Sedimentation equilibrium experiments show that the tetrameric enzyme dissociates to form a heterodimer at low concentration, with Kd ≈ 2 µM. The intact (tetrameric) enzyme binds specifically to a 30 bp DNA duplex containing the AhdI recognition sequence GACN5GTC with high affinity (Kd ≈ 50 nM), but at low enzyme concentration the DNA binding activity is governed by the dissociation of the tetramer into dimers, leading to a sigmoidal DNA binding curve. In contrast, only non-specific binding is observed if the duplex lacks the recognition sequence. Methylation activity of the purified enzyme was assessed by its ability to prevent restriction by the cognate endonuclease. The subunit structure of the M.AhdI methyltransferase resembles that of type I MTases, in contrast to the R.AhdI endonuclease which is typical of type II systems. AhdI appears to be a novel R-M system with properties intermediate between simple type II systems and more complex type I systems, and may represent an intermediate in the evolution of R-M systems.  相似文献   

17.
To localise the type I restriction-modification (R-M) enzyme EcoKI within the bacterial cell, the Hsd subunits present in subcellular fractions were analysed using immunoblotting techniques. The endonuclease (ENase) as well as the methylase (MTase) were found to be associated with the cytoplasmic membrane. HsdR and HsdM subunits produced individually were soluble, cytoplasmic polypeptides and only became membrane-associated when coproduced with the insoluble HsdS subunit. The release of enzyme from the membrane fraction following benzonase treatment indicated a role for DNA in this interaction. Trypsinization of spheroplasts revealed that the HsdR subunit in the assembled ENase was accessible to protease, while HsdM and HsdS, in both ENase and MTase complexes, were fully protected against digestion. We postulate that the R-M enzyme EcoKI is associated with the cytoplasmic membrane in a manner that allows access of HsdR to the periplasmic space, while the MTase components are localised on the inner side of the plasma membrane.  相似文献   

18.
Plasmid vectors capable of expressing the large and small subunits of the vaccinia virus mRNA capping enzyme were constructed and used to transform Escherichia coli. Conditions for the induction of the dimeric enzyme or the individual subunits in a soluble form were identified, and the capping enzyme was purified to near homogeneity. Proteolysis of the capping enzyme in bacteria yields a 60-kDa product shown previously to possess the mRNA triphosphatase and guanyltransferase activities (Shuman, S. (1990) J. Biol. Chem. 265, 11960-11966) was isolated and shown by amino acid sequence analysis to be derived from the NH2 terminus of D1R. The individual subunits lacked methyltransferase activity when assayed alone. However, mixing the D1R and D12L subunits permitted reconstitution of the methyltransferase activity, and this appearance in activity accompanied the association of the subunits. In contrast, mixing the D12L subunit with the D1R-60K proteolytic fragment failed to yield methyltransferase activity or result in a physical association of the two proteins. These results demonstrate that the methyltransferase active site requires the presence of the D12L subunit with the carboxyl-terminal portion of the D1R subunit. Furthermore, since the mRNA triphosphatase and guanyltransferase active sites reside in the NH2-terminal domain of the D1R subunit, and the methyltransferase activity is found in the carboxyl-terminal portion of this subunit and D12L, there must be at least two separate active sites in this enzyme.  相似文献   

19.
Phage Trojan horses: a conditional expression system for lethal genes   总被引:4,自引:0,他引:4  
J Heitman  W Fulford  P Model 《Gene》1989,85(1):193-197
The EcoRI restriction enzyme (ENase) cleaves DNA molecules within the sequence GAATTC. Cells expressing this lethal activity normally make a second enzyme, the M.EcoRI methyltransferase (MTase), which protects their chromosomal DNA by modifying the EcoRI recognition sites. To isolate mutants of the EcoRI ENase, its gene was cloned into a filamentous phage vector (M13mp18) under control of the lac promoter. Normally, filamentous phages (M13, f1 and their derivatives) form turbid plaques by impairing the growth of their host cell without killing it. In contrast, phages expressing the EcoRI ENase kill the host cell, but survive long enough to produce plaques which are very clear. Expression of the M.EcoRI MTase rescues the host and restores turbid plaque formation. EcoRI ENase mutants were isolated by screening for mutants that make turbid, instead of clear, plaques on an M- host. This conditional expression system may be useful for cloning and mutating genes for other toxic proteins.  相似文献   

20.
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by analytical ultracentrifugation studies, which show the enzyme to be tetrameric in solution. The structure of each subunit consists of an N-terminal (beta/alpha)(8)-barrel followed by a C-terminal alpha-helical domain. The active site comprises residues from two adjacent subunits, across an interface, and is located at the C-terminal side of the (beta/alpha)(8)-barrel domain. A comparison with the other known DHDPS structures shows that the overall architecture of the active site is largely conserved, albeit the proton relay motif comprising Tyr(143), Thr(54) and Tyr(117) appears to be disrupted. The kinetic parameters of the enzyme are reported: K(M)(ASA)=0.43+/-0.02 mM, K(M)(pyruvate)=0.17+/-0.01 mM and V(max)=4.42+/-0.08 micromol x s(-1) x mg(-1). Interestingly, the V(max) of Mtb-DHDPS is 6-fold higher than the corresponding value for Escherichia coli DHDPS, and the enzyme is insensitive to feedback inhibition by (S)-lysine. This can be explained by the three-dimensional structure, which shows that the (S)-lysine-binding site is not conserved in Mtb-DHDPS, when compared with DHDPS enzymes that are known to be inhibited by (S)-lysine. A selection of metabolites from the aspartate family of amino acids do not inhibit this enzyme. A comprehensive understanding of the structure and function of this important enzyme from the (S)-lysine biosynthesis pathway may provide the key for the design of new antibiotics to combat tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号