首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STAT3 is the key mediator of apoptosis in mammary gland. We demonstrate here that LIF is the physiological activator of STAT3, because in involuting mammary glands of Lif(-/-) mice, pSTAT3 is absent and the STAT3 target, C/EBPdelta, is not upregulated. Similar to Stat3 knockouts, Lif(-/-) mammary glands exhibit delayed involution, reduced apoptosis and elevated levels of p53. Significantly, Lif(-/-) glands display precocious development during pregnancy, when pSTAT3 is not normally detected. We show that pERK1/2 is significantly reduced in Lif(-/-) glands at this time, suggesting that at this stage LIF mediates its effects through pERK1/2. Inhibition of LIF-mediated ERK1/2 phosphorylation potentiates the proapoptotic effects of STAT3. LIF therefore signals alternately through ERK1/2, then STAT3, to regulate mammary growth and apoptosis.  相似文献   

2.
3.
4.
5.
6.
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.  相似文献   

7.
Inhibitor of differentiation-1 (Id-1) has been shown to play an essential role in cell proliferation, invasion, migration, and anti-apoptosis. However, the effect of Id-1 in mammary gland development remains unknown. Here, we generated MMTV-Id-1 transgenic mice to study the role of Id-1 in mammary gland development. In virgin mice, Id-1 overexpression led to precocious development and delayed regression of terminal end buds (TEBs) compared with wild-type mice. The number of BrdU-positive cells and the expression of Wnt signaling molecules, β-catenin and cyclin D1, which regulate ductal extension and TEB formation in virgin, were statistically higher in Id-1 transgenic mice than in wild-type mice. Id-1 also had an effect on the formation and proliferation of lobuloalveolar structures during early and mid-pregnancy. Id-1 transgenic mice had more lobulated and prominent alveolar budding than wild-type mice and had significantly greater counts of lobuloalveolar structures in early pregnancy. The expression of BrdU, β-catenin, and cyclin D1 was also predominantly increased in Id-1 transgenic mice. Moreover, Id-1 transgenic mice showed delayed involution. Id-1 regulated the expression levels of anti-apoptotic Bcl-2 and pro-apoptotic Bax, and resulted in delay of apoptotic peak during postlactational involution. We also found that Id-1 was able to modulate expression of the regulators of Wnt/β-catenin signaling such as phospho-Akt, BMP2, FGF3, and RAR-β in tubuloalveolar development of mammary glands. Taken together, our results suggest that Id-1 plays a pivotal role in mammary gland development through Wnt signaling-mediated acceleration of precocity and alveologenesis and Bcl-2 family members-mediated delay of involution.  相似文献   

8.
9.
Marsupials provide a suitable alternative model to studying mammary gland involution. They have evolved a different reproductive strategy from eutherians, giving birth to an altricial young and secreting milk that changes in composition during lactation. In this study, we used a marsupial-specific EST microarray to identify 47 up-regulated genes during mammary gland involution in the tammar wallaby (Macropus eugenii). These include the pro-apoptotic tumour necrosis factor receptor superfamily 21 (TNFRSF21) gene, whose expression in the mammary gland has not previously been reported. Genes encoding putative novel milk proteins which may protect the mammary gland from infection were also found to be up-regulated, such as amiloride binding protein 1 (ABP1), complement component 1QB (C1QB), complement component 4A (C4A) and colony stimulating factor 2 receptor β (CSF2Rβ). Our results show that the marsupial reproductive strategy was successfully exploited to identify genes and putative novel milk proteins implicated in mammary gland involution.  相似文献   

10.
11.
12.
Mammary glands are special tissue characterized by proliferation of the epithelium, during puberty and pregnancy and by programmed cell death, during involution. In this study, apoptosis was identified by TUNEL staining and then related to cell proliferation, as determined by Ki-67 staining. The apoptotic index was at its highest at 8 days of involution, whereas the proliferation index was at its highest during lactation. Caspase-3 was immunolocalised only in mast cells and along the basal membrane in the mammary tissue at −10 days from lambing, 150 days of lactation and at 8 days of involution. This finding could indicate that caspase-3 is not involved in sheep mammary gland apoptosis, but that other proteins – such as apoptosis inducing factor (AIF) – can trigger apoptosis, through the mitochondrial pathway, in a caspase-independent manner. The expression of genes involved in the regulation of lactation and apoptosis was also investigated and determined relatively to −10 days from lambing. The relative expression level of LALBA, reached its maximum during lactation, whereas the expressions of BCL2, BCL2L1, BAX, STAT5A, STAT3, IGFBP5 and FOXO3A, increased significantly during involution in correlation with apoptotic index.This work shows for the first time the turnover of mammary cells and the interaction of their signals during the complete lactation cycle in sheep. The data on gene expression can contribute to elucidate the mechanisms controlling milk production and cell turnover in this species.  相似文献   

13.
14.
CCAAT/enhancer-binding proteins (C/EBPs) are a highly conserved family of DNA-binding proteins that regulate cell-specific growth, differentiation, and apoptosis. Here, we show that induction of C/EBPdelta gene expression during G0 growth arrest is a general property of mammary-derived cell lines. C/EBPdelta is not induced during G0 growth arrest in 3T3 or IEC18 cells. C/EBPdelta induction is G0-specific in mouse mammary epithelial cells; C/EBPdelta gene expression is not induced by growth arrest in the G1, S, or G2 phase of the cell cycle. C/EBPdelta antisense-expressing cells (AS1 cells) maintain elevated cyclin D1 and phosphorylated retinoblastoma protein levels and exhibit delayed G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. Conversely, C/EBPdelta-overexpressing cells exhibited a rapid decline in cyclin D1 and phosphorylated retinoblastoma protein levels, a rapid increase in the cyclin-dependent kinase inhibitor p27, and accelerated G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. When C/EBPdelta levels were rescued in AS1 cells by transfection with a C/EBPdelta "sense" construct, normal G0 growth arrest and apoptosis were restored. These results demonstrate that C/EBPdelta plays a key role in the regulation of G0 growth arrest and apoptosis in mammary epithelial cells.  相似文献   

15.
16.
17.
CCAAT/Enhancer binding proteins (C/EBPs) are a family of nuclear proteins that function in the control of cell growth, death, and differentiation. We previously reported that C/EBPdelta plays a key role in mammary epithelial cell G(0) growth arrest. In this report, we investigated the role of C/EBPdelta in mammary gland development and function using female mice homozygous for a targeted deletion of C/EBPdelta (C/EBPdelta -/-). C/EBPdelta -/- females develop normally and exhibit normal reproductive and lactational performance. Adult nulliparous C/EBPdelta -/- females, however, exhibit mammary epithelial cell growth control defects. The mean number of mammary ductal branches is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ (wild-type control) females (66.8 +/- 5.2 vs 42.9 +/- 6.3 branch points/field, P < 0.01). In addition, the mean total mammary gland cellular volume occupied by epithelium is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls (29.0 +/- 1.4 vs 20.4 +/- 1.3, P < 0.001). Our results showed that the BrdU labeling index was significantly higher in mammary epithelial cells from nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls during the proestrus/estrus (4.55 +/- 0.70 vs 2.14 +/- 0.43, P < 0.01) and metestrus/diestrus (6.92 +/- 0.75 vs 3.98 +/- 0.43 P < 0.01) phases of the estrus cycle. In contrast, the percentage of mammary epithelial cells undergoing apoptosis during both phases of the estrus cycle did not differ between C/EBPdelta -/- and C/EBPdelta +/+ females. The increased epithelial cell content and proliferative capacity was restricted to the nulliparous C/EBPdelta -/- females as no differences in mammary gland morphology, ductal branching or total epithelial content were observed between multiparous C/EBPdelta -/- and C/EBPdelta +/+ females. These results demonstrate that C/EBPdelta plays a novel role in mammary epithelial cell growth control that appears to be restricted to the nulliparous mammary gland.  相似文献   

18.
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号