首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like "lipid pocket" via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717-720 in the turn of the hairpin bridge and four tandem complementary residues 997-1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997-1000 deletion (apoB:996), 2) residues 717-720 deletion (apoB:1000Delta717-720), and 3) substitution of charged residues 997-1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL(3) and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Delta717-720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL(3)-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apoB-containing lipoprotein assembly, and residues 717-720 and 997-1000 play key roles in this process, perhaps via a hairpin-bridge mechanism.  相似文献   

2.
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.  相似文献   

3.
The process of assembly of apolipoprotein (apo) B-containing lipoprotein particles occurs co-translationally after disulfide-dependent folding of the N-terminal domain of apoB but the mechanism is not understood. During a recent database search for protein sequences that contained similar amphipathic beta strands to apoB-100, four vitellogenins, the precursor form of lipovitellin, an egg yolk lipoprotein, from chicken, frog, lamprey, and C. elegans appeared on the list of candidate proteins. The X-ray crystal structure of lamprey lipovitellin is known to contain a "lipid pocket" lined by antiparallel amphipathic beta sheets. Here we report that the first 1000 residues of human apoB-100 (the alpha(1) domain plus the first 200 residues of the beta(1) domain) have sequence and amphipathic motif homologies to the lipid-binding pocket of lamprey lipovitellin. We also show that most of the alpha(1) domain of human apoB-100 has sequence and amphipathic motif homologies to human microsomal triglyceride transfer protein (MTP), a protein required for assembly of apoB-containing lipoproteins. Based upon these results, we suggest that an LV-like "proteolipid" intermediate containing a "lipid pocket" is formed by the N-terminal portion of apoB alone or, more likely, as a complex with MTP. This intermediate produces a lipid nidus required for assembly of apoB-containing lipoprotein particles; pocket expansion through the addition of amphipathic beta strands from the beta(1) domain of apoB results in the formation of a progressively larger high density lipoprotein (HDL)-like, then very low density lipoprotein (VLDL)-like, spheroidal lipoprotein particle.  相似文献   

4.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

5.
Dashti N  Gandhi M  Liu X  Lin X  Segrest JP 《Biochemistry》2002,41(22):6978-6987
Apolipoprotein (apo) B, the major protein component of the atherogenic low-density lipoprotein (LDL), has a pentapartite structure, NH2-betaalpha1-beta1-alpha2-beta2-alpha3-COOH, the beta domains containing multiple amphipathic beta strands and the alpha domains containing multiple amphipathic alpha helixes. We recently reported that the first 1000 residues of human apoB-100 have sequence and amphipathic motif homologies to the lipid-pocket of lamprey lipovitellin (LV) [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416]. The lipid-pocket of LV is a small triangular space lined by three antiparallel amphipathic beta sheets, betaA, betaB, and betaD. The betaA and betaB sheets are joined together by an antiparallel alpha helical bundle, alpha domain. We proposed [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416] that formation of a LV-like lipid-pocket is necessary for lipid-transfer to apoB-containing lipoprotein particles and that this pocket is formed by association of the region of the betaalpha1 domain homologous to the betaA and betaB sheets of LV with a betaD-like amphipathic beta sheet from microsomal triglyceride transfer protein (MTP). To test this hypothesis, we generated four truncated cDNA constructs terminating at or near the juncture of the betaalpha1 and beta1 domains: Residues 1-800 (apoB:800), 1-931 (apoB:931), 1-1000 (apoB:1000), and 1-1200 (apoB:1200). Characterization of particles secreted by stable transformants of the McA-RH7777 cell line demonstrated that (i) ApoB:800, missing the betaB domain, was secreted as a lipid-poor aggregate. (ii) ApoB:931, containing most, but not all, of the betaB domain, was secreted as lipid-poor particles unassociated with MTP. (iii) ApoB:1000, containing the entire betaB domain, was secreted as a relatively lipid-rich particle associated hydrophobically with MTP. (iv) ApoB:1200, containing the betaalpha1 domain plus 200 residues of the beta1 domain, was secreted predominantly as a lipid-poor particle but also as a minor relatively lipid-rich, MTP-associated particle. We thus have captured an intermediate in apoB-containing particle assembly, a lipid transfer competent pocket formed by association of the complete betaalpha1 domain of apoB with MTP.  相似文献   

6.
We have explored the minimum sequence requirement for the initiation of apolipoprotein B (apoB)-mediated triglyceride-rich lipoprotein assembly. A series of apoB COOH-terminal truncation mutants, spanning a range from apoB34 (amino acid residues 1-1544 of apoB100) to apoB19 (residues 1-862) were transfected into COS cells with and without coexpression of the microsomal triglyceride transfer protein (MTP). ApoB34, -25, -23, -21, -20.5, and -20.1 underwent efficient conversion to buoyant lipoproteins when coexpressed with MTP. ApoB19.5 (amino acids 1-884) also directed MTP-dependent particle assembly, although at reduced efficiency. When apoB19.5 was truncated by another 22 amino acids to form apoB19, MTP-dependent lipoprotein assembly was abolished. Analysis of the lipid stoichiometry of secreted lipoproteins revealed that all apoB truncation mutants formed spherical particles containing a hydrophobic core. Even highly truncated assembly-competent forms of apoB, such as apoB19.5 and 20.1, formed lipoproteins with surface:core lipid ratios of <1. We conclude that the translation of the first approximately 884 amino acids of apoB completes a domain capable of initiating nascent lipoprotein assembly. The composition of lipids recruited into lipoproteins by this initiating domain is consistent with formation of small emulsion particles, perhaps by simultaneous desorption of both polar and neutral lipids from a saturated bilayer.  相似文献   

7.
The amino-terminal 20.1% of apolipoprotein B (apoB20.1; residues 1-912) is sufficient to initiate and direct the formation of nascent apoB-containing lipoprotein particles. To investigate the mechanism of initial lipid acquisition by apoB, we examined the lipid binding and interfacial properties of a carboxyl-terminal His6-tagged form of apoB20.1 (apoB20.1H). ApoB20.1H was expressed in Sf9 cells and purified by nickel affinity chromatography. ApoB20.1H was produced in a folded state as characterized by formation of intramolecular disulfide bonds and resistance to chemical reduction. Dynamic light scattering in physiological buffer indicated that purified apoB20.1H formed multimers, which were readily dissociable upon the addition of nonionic detergent (0.1% Triton X-100). ApoB20.1H was incapable of binding dimyristoylphosphatidylcholine multilamellar vesicles, unless its multimeric structure was first disrupted by guanidine hydrochloride. However, apoB20.1H multimers spontaneously dissociated and bound to the interface of naked and phospholipid-coated triolein droplets. These data reveal that the initiating domain of apoB contains solvent-accessible hydrophobic sequences, which, in the absence of a hydrophobic lipid interface or detergent, engage in self-association. The high affinity of apoB20.1H for neutral lipid is consistent with the membrane binding and desorption model of apoB-containing lipoprotein assembly.  相似文献   

8.
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90–95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.  相似文献   

9.
Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid moieties of low-density lipoprotein is of particular interest due to its potential role in the unregulated uptake of lipids and cholesterol by macrophages; this may contribute to the initial stage of foam cell formation in atherosclerosis. In the study reported here, we examined the comparative time-courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid-free BSA. Concomitant with Trp loss, the antioxidant alpha-tocopherol is consumed with subsequent extensive lipid peroxidation. Further changes to the protein, including the copper-ion-dependent 3.5-fold increase in 3,4-dihydroxyphenylalanine and the copper-ion-independent 3-5-fold increase in o-tyrosine, oxidation products of Tyr and Phe, respectively, only occur after maximal lipid peroxidation. Long incubation periods result in depletion of 3,4-dihydroxyphenylalanine, presumably reflecting further oxidative changes. Overall, copper-ion-mediated oxidation of LDL appears to proceed initially by lipid radical-dependent processes, even though some of the earliest detectable changes occur on the apoB100 protein. This is followed by extensive lipid peroxidation and subsequent additional oxidation of aromatic residues on apoB100, though it is not yet clear whether this late protein oxidation is lipid-dependent or occurs as a result of direct radical attack.  相似文献   

10.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

11.
Jiang ZG  Gantz D  Bullitt E  McKnight CJ 《Biochemistry》2006,45(39):11799-11808
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein that dictates the synthesis of chylomicrons and very low density lipoproteins. ApoB is the major protein in low density lipoprotein, also known as the "bad cholesterol" that is directly implicated in atherosclerosis. It has been suggested that the N-terminal domain of apoB plays a critical role in the formation of apoB-containing lipoproteins through the initial recruitment of phospholipids in the endoplasmic reticulum. However, very little is known about the mechanism of lipoprotein nucleation by apoB. Here we demonstrate that a strong phospholipid remodeling function is associated with the predicted alpha-helical and C-sheet domains in the N-terminal 17% of apoB (B17). Using dimyristoylphosphatidylcholine (DMPC) as a model lipid, these domains can convert multilamellar DMPC vesicles into discoidal-shaped particles. The nascent particles reconstituted from different apoB domains are distinctive and compositionally homogeneous. This phospholipid remodeling activity is also observed with egg phosphatidylcholine (egg PC) and is therefore not DMPC-dependent. Using kinetic analysis of the DMPC clearance assay, we show that the identified phospholipid binding sequences all map to the surface of the lipid binding pocket in the B17 model based on the homologous protein, lipovitellin. Since both B17 and microsomal triglyceride transfer protein (MTP), a critical chaperone during lipoprotein assembly, are homologous with lipovitellin, the identification of these phospholipid remodeling sequences in B17 provides important insights into the potential mechanism that initiates the assembly of apoB-containing lipoproteins.  相似文献   

12.
Hepatic lipoprotein assembly and secretion can be regulated by proteasomal degradation of newly synthesized apoB, especially if lipid synthesis or lipid transfer is low. Our previous studies in HepG2 cells showed that, under these conditions, newly synthesized apoB remains stably associated with the endoplasmic reticulum (ER) membrane (Mitchell, D. M., Zhou, M., Pariyarath, R., Wang, H., Aitchison, J. D., Ginsberg, H. N., and Fisher, E. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14733-14738). We now show that independent of lipid synthesis, apoB chains that appear full-length are, in fact, incompletely translated polypeptides still engaged by the ribosome and associated with the ER translocon. In the presence of active lipid synthesis and transfer, translation and lipoprotein assembly are completed, and the complexes exit the ER. Upon omitting fatty acids from, or adding a microsomal triglyceride transfer protein inhibitor to, culture media to reduce lipid synthesis or transfer, respectively, apoB was degraded while it remained associated with the ER and complexed with cytosolic hsp70 and proteasomes. Thus, unlike other ER substrates of the proteasome, such as major histocompatibility complex class I molecules, apoB does not fully retrotranslocate to the cytosol before entering the ubiquitin-proteasome pathway. Although, upon immunofluorescence, apoB in proteasome-inhibited cells accumulated in punctate structures similar in appearance to aggresomes (cytosolic structures containing molecules irreversibly lost from the secretory pathway), these apoB molecules could be secreted when lipid synthesis was stimulated. The results suggest a model in which 1) apoB translation does not complete until lipoprotein assembly terminates, and 2) assembly with lipids or entry into the ubiquitin-proteasome pathway occurs while apoB polypeptides remain associated with the translocon and attached to the ribosome.  相似文献   

13.
Low density lipoprotein (LDL) oxidation is characterized by alterations in biological properties and structure of the lipoprotein particles, including breakdown and modification of apolipoprotein B (apoB). We compared apoB breakdown patterns in different models of minimally and extensively oxidized LDL using Western blotting techniques and several monoclonal and polyclonal antibodies. It was found that copper and endothelial cell-mediated oxidation produced a relatively similar apoB banding pattern with progressive fragmentation of apoB during LDL oxidation, whereas malondialdehyde (MDA)- and hydroxynonenal (HNE) -modified LDL produced an aggregated apoB. It is conceivable that apoB fragments present in copper and endothelial cell oxidized LDL lead to the exposure on the lipoprotein surface of different protein epitopes than in aggregated MDA-LDL and HNE-LDL. Although all models of extensively oxidized LDL led to increased lipid uptake in macrophages, mild degrees of oxidation interfered with LDL uptake in fibroblasts and extensively oxidized LDL impaired degradation of native LDL in fibroblasts. We suggest that in order to improve interpretation and comparison of results, data obtained with various models of oxidized LDL should be compared to the simpliest and most reproducible models of 3 h and 18 h copper-oxidized LDL (apoB breakdown) and MDA-LDL (apoB aggregation) since different models of oxidized LDL have significant differences in apoB breakdown and aggregation patterns which may affect immunological and biological properties of oxidized LDL.  相似文献   

14.
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP.  相似文献   

15.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

16.
Lipoprotein(a) [Lp(a)] is assembled via an initial noncovalent interaction between apolipoprotein B100 (apoB) and apolipoprotein(a) [apo(a)] that facilitates the formation of a disulfide bond between the two proteins. We previously reported that a lysine-rich, alpha-helical peptide spanning human apoB amino acids 4372-4392 was an effective inhibitor of Lp(a) assembly in vitro. To identify the important structural features required for inhibitory action, new variants of the apoB4372-4392 peptide were investigated. Introduction of a central leucine to proline substitution abolished the alpha-helical structure of the peptide and disrupted apo(a) binding and inhibition of Lp(a) formation. Substitution of hydrophobic residues in the apoB4372-4392 peptide disrupted apo(a) binding and inhibition of Lp(a) assembly without disrupting the alpha-helical structure. Substitution of all four lysine residues in the peptide with arginine decreased the IC50 from 40 microM to 5 microM . Complexing of the arginine-substituted peptide to dimyristoylphosphatidylcholine improved its activity further, yielding an IC50 of 1 microM. We conclude that the alpha-helical structure of apoB4372-4392, in combination with hydrophobic residues at the lipid/water interface, is crucial for its interaction with apo(a). Furthermore, the interaction of apoB4372-4392 with apo(a) is not lysine specific, because substitutions with arginine result in a more effective inhibitor.  相似文献   

17.
Decrease of plasma lipid levels by polyphenols was linked to impairment of hepatic lipoprotein secretion. However, the intestine is the first epithelium that faces dietary compounds, and it contributes to lipid homeostasis by secreting triglyceride-rich lipoproteins during the postprandial state. The purpose of this study was to examine the effect of apple and wine polyphenol extracts on lipoprotein synthesis and secretion in human Caco-2/TC7 enterocytes apically supplied with complex lipid micelles. Our results clearly demonstrate that apple, but not wine, polyphenol extract dose-dependently decreases the esterification of cholesterol and the enterocyte secretion of lipoproteins. Apple polyphenols decrease apolipoprotein B (apoB) secretion by inhibiting apoB synthesis without increasing the degradation of the newly synthesized protein. Under our conditions, cholesterol uptake, apoB mRNA, and microsomal triglyceride protein activity were not modified by apple polyphenols. The main monomers present in our mixture did not interfere with the intestinal lipid metabolism. By contrast, apple procyanidins reproduced the inhibition of both cholesteryl ester synthesis and lipoprotein secretion. Overall, our results are compatible with a mechanism of action of polyphenols resulting in impaired lipid availability that could induce the inhibition of intestinal lipoprotein secretion and contribute to the hypolipidemic effect of these compounds in vivo.  相似文献   

18.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

19.
M T Walsh  D Atkinson 《Biochemistry》1983,22(13):3170-3178
Apoprotein B (apoB) of human plasma low-density lipoprotein (LDL) (d 1.025-1.050 g/mL) has been solubilized with solid sodium deoxycholate (NaDC) above its critical micellar concentration. ApoB is isolated by gel-filtration chromatography as a mixed micellar complex of protein and detergent in high yield in a lipid-free form. A soluble apoB-dimyristoylphosphatidylcholine (DMPC) complex has been prepared by incubation of aqueous solutions of apoB-NaDC and DMPC-NaDC (2/1 w/w) at room temperature with detergent removal by extensive dialysis. A combination of gel chromatographic and density gradient fractionation of DMPC-apoB incubation mixtures demonstrates that a reasonably well-defined complex of DMPC and apoB is formed with a 4:1 w/w lipid:protein ratio. Negative-stain electron microscopy shows these particles to be single-bilayer phospholipid vesicles with a diameter of 210 +/- 20 A into which the apoB is incorporated. Circular dichroic spectra of NaDC-solubilized apoB show apoB to have similar conformation to that seen in the native LDL particle. However, apoB that has been complexed with DMPC exhibits more alpha-helix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band (apparent Mr 366000) for apoB after solubilization, purification, and interaction with phospholipid. The behavior of apoB during its reassociation with phospholipid and the structural features of the DMPC-apoB particle are similar to those observed in the interaction of solubilized membrane proteins with lipid rather than that of other apo-lipoproteins.  相似文献   

20.
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)—another LLTP family member—and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp–LpR complex, in contrast to the LDL–LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca2+ concentration in the endosome. This remarkable stability of the ligand–receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号