首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
The Drosophila melanogaster YA protein is a maternally provided nuclear lamina component that is essential during the transition from meiosis to mitosis at the beginning of embryogenesis. Localization of YA to the nuclear envelope is required for its function; this localization is cell cycle-dependent during embryogenesis. Here we show that the ability of YA to enter nuclei is modulated during development. In developing egg chambers, YA protein is made but excluded from nuclei of nurse cells and oocytes; upon egg activation, YA acquires the ability to enter nuclei and becomes incorporated into the nuclear lamina in unfertilized eggs and embryos. This localization switch correlates with changes in the phosphorylation state of YA. YA in ovaries is hyperphosphorylated relative to YA in unfertilized eggs and embryos. Through site-directed mutagenesis, we identified 443T, a potential phosphorylation site for both cyclin-dependent protein kinase and mitogen-activated-protein kinase, as one of the sites likely involved in this developmental control. Our results suggest that phosphorylation plays a role in modulating the localization of YA during development. A model for developmental regulation of the nuclear entry of YA is proposed and implications for understanding Drosophila egg activation are discussed.  相似文献   

2.
Dbf4 is a regulatory subunit for the Cdc7 protein kinase that is required for the initiation of eukaryotic DNA replication, but the precise roles of Dbf4-Cdc7 remain to be determined. Here we identified a Xenopus homolog of Dbf4 (XDbf4) and characterized XDbf4 and Xenopus Cdc7 (XCdc7) in Xenopus egg extracts. XDbf4 formed a complex with XCdc7 in egg extracts and activated XCdc7 kinase activity in vitro. In contrast with Dbf4 in yeast and mammalian cultured cells, the XDbf4 levels in egg extracts did not change during the cell cycle progression. XDbf4 was a phosphoprotein in interphase extracts, and was apparently hyperphosphorylated in cytostatic factor (CSF)-mediated, metaphase-arrested extracts and in mitotic extracts. However, the hyperphosphorylation of XDbf4 did not seem to affect the level of kinase activation, or chromatin binding of the XDbf4-XCdc7 complex. Upon release from CSF-arrest, XDbf4 was partially dephosphorylated and bound to chromatin. Interestingly, XDbf4 was loaded onto chromatin before XCdc7 during DNA replication in egg extracts. These results suggest that the function of XDbf4-XCdc7 during the early embryonic cell cycle is regulated in a manner distinct from that during the somatic cell cycle.  相似文献   

3.
J. Liu  K. Song    M. F. Wolfner 《Genetics》1995,141(4):1473-1481
The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that YA function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function and that YA might interact with itself either directly or indirectly.  相似文献   

4.
Guinea pig and rabbit uterine nuclei bound [3H] progesterone in vitro only in the presence of cytosol from estrogen-stimulated uteri. Nuclei from unstimulated and estrogen-stimulated uteri bound progesterone equally well. Nuclei of nontarget tissues also bound progesterone, but to a lesser extent. The rate of nuclear bindins increased with temperature from 0-30 degrees. At 25 degrees nuclear binding remained stable for at least 3 h, but at temperatures of 30 degrees and greater, nuclear binding decreased rapidly after 15 min. Activation of the progesterone-cytoplasmic receptor complex (the change in the complex that enables it to bind quickly to nuclei at 0 degrees) took place slowly at temperatures from 0-5 degrees and rapidly at 10-25 degrees. Activation was facilitated by dilution of the cytosol. Some activation occurred in diluted cytosol in the absence of added progesterone. The cytoplasmic progesterone receptor had a sedimentation coefficient of 7 S when concentrated cytosol (20 mg of protein/ml) was incubated with progesterone at 0 degrees in 5 mM phosphate buffer. Diluting the cytosol and increasing the temperature to 20 degrees caused the sedimentation coefficient to decrease to 5.5 S. Gel filtration of guinea pig uterine cytosol on Sephadex G-100, in the absence of progesterone, yielded a progesterone-binding fraction in the void volume, with a sedimentation coefficient of 5.5 S. The complex of progesterone with the material in the void volume was taken up by nuclei at 0 degrees more rapidly than the complex of progesterone and crude cytosol. The nuclear uptake of progesterone was decreased in phosphate buffer of concentrations greater than 80 mM. Under conditions that favor the nuclear binding of progesterone, the sedimentation coefficient of the cytoplasmic progesterone receptor was 5.5 S. This may be the form of the preceptor which is taken up by nuclei. In decreasing order of effectiveness, unlabeled progesterone, 5 alpha-pregnane-3,20-dione, corticosterone 20 alpha-hydroxy-4-pregnen-3-one, testosterone, estradiol-17 beta, and cortisol competed with [3H] progesterone for binding to nuclei.  相似文献   

5.
6.
Proteins from the large and small subunits of Aedes albopictus (mosquito) cytoplasmic ribosomes were characterized by two-dimensional polyacrylamide gel electrophoresis. The small subunit contained 28-31 proteins ranging in molecular mass from 10 to 49 kDa. The large subunit contained 36-39 proteins that ranged in molecular mass from 11 to 53 kDa. The largest protein on the small subunit, S1, was the predominant phosphorylated ribosomal protein. Under long-term labelling conditions, L4 and L33 were also phosphorylated. Peptide mapping by partial proteolysis indicated that Ae. albopictus S1 may share partial amino acid homology with the phosphorylated ribosomal protein S6 from Drosophila melanogaster. Unlike Drosophila S6, however, Aedes S1 was not dephosphorylated during heat shock. Treatment of mosquito cells with the insect molting hormone 20-hydroxyecdysone did not affect phosphorylation of ribosomal proteins.  相似文献   

7.
L Cooley  E Verheyen  K Ayers 《Cell》1992,69(1):173-184
The entire cytoplasmic contents of 15 highly polyploid nurse cells are transported rapidly to the oocyte near the end of Drosophila oogenesis. chickadee is one of a small group of genes whose mutant phenotype includes a disruption of this nurse cell cytoplasm transport. We have cloned the chickadee gene and found that cDNA clones encode a protein 40% identical to yeast and Acanthamoeba profilin. The nurse cells from chickadee egg chambers that lack ovary-specific profilin fail to synthesize cytoplasmic actin networks correctly. In addition, the nurse cell nuclei in chickadee egg chambers become displaced and often partially stretched through the channels leading into the oocyte, blocking the flow of cytoplasm. We suggest that the newly synthesized cytoplasmic actin networks are responsible for maintaining nuclear position in the nurse cells.  相似文献   

8.
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.  相似文献   

9.
The establishment of axial polarity in the Drosophila egg and embryo depends on intercellular communication between two cell types in the ovary, the germline, and the soma. The genes gurken and egfr encode two essential players of this communication pathway. Gurken protein, a TGF-alpha-like molecule, is expressed in the germline, while the EGF-receptor homolog, Egfr, is expressed in the somatic cells of the ovary. Using the yeast two-hybrid system we show here, for the first time, that Gurken protein directly binds to the extracellular domain of Egfr. This direct physical association requires the presence of an intact EGF motif within Gurken protein. Furthermore, we provide evidence that this characteristic motif may be sufficient for interaction with the receptor, at list in vitro. Our results firmly establish Gurken as the germline ligand of Drosophila Egfr.  相似文献   

10.
The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation.  相似文献   

11.
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.  相似文献   

12.

Background  

The Drosophila YA protein is required to initiate the embryonic cleavage divisions. After egg activation, YA enters nuclei and interacts with chromatin and the nuclear lamina. This study was designed to define more precisely the events prior to the first cleavage division that are dependent upon YA.  相似文献   

13.
Spinal muscular atrophy (SMA) is a neurodegenerative disorder resulting from homozygous loss of the SMN1 gene. To investigate SMN functions, we undertook the yeast two-hybrid screens and identified Drosophila Rpp20, a subunit of the RNase P and RNase MRP holoenzymes, to interact with the Drosophila SMN protein. Interaction between human SMN and Rpp20 was validated by in vitro binding assays and co-immunoprecipitation. The exons 3-4 of SMN are necessary and sufficient for binding to Rpp20. Binding efficiency between Rpp20 and SMNs with mutations in the Y-G domain is abrogated or reduced and correlated with severity of SMA disease. Immunofluorescence results indicate that Rpp20 is diffusely distributed throughout the cytoplasm with higher concentration observed in the nucleus. However, in response to stress, SMN forms aggregates and redistributes Rpp20 into punctuated cytoplasmic SMN granules. Our findings suggest a possible functional association of SMN with RNase P and RNase MRP complexes.  相似文献   

14.
Dramatic changes occur in nuclear organization and function during the critical developmental transition from meiosis to mitosis. The Drosophila nuclear lamina protein YA binds to chromatin and is uniquely required for this transition. In this study, we dissected YA's binding to chromatin. We found that YA can bind to chromatin directly and specifically. It binds to DNA but not RNA, with a preference for double-stranded DNA (linear or supercoiled) over single-stranded DNA. It also binds to histone H2B. YA's binding to DNA and histone H2B is mediated by four domains distributed along the length of the YA molecule. A model for YA function at the end of Drosophila female meiosis is proposed.  相似文献   

15.
Xenopus nuclear factor 7 (xnf7) is a maternal gene product that functi ons in dorsal/ventral patterning of the embryo. The xnf7 protein is stored in the oocyte nucleus germinal vesicle in a hypophosphorylated state. At oocyte maturation, xnf7 is hyperphosphorylated and released into the cytoplasm, where it is anchored until the midblastula stage, where it is dephosphorylated and enters the nucleus. We demonstrated that cytoplasmic anchoring of xnf7 was regulated by changes in the phosphorylation status of four threonines within two sites, site 1 (Thr-103) and site 2 (Thr-209, Thr-212, and Thr-218), which function in an additive manner. A mutant form of xnf7 (xnf7thr-glu) in which the threonines at sites 1 and 2 were mutated to glutamic acids to mimic a permanent state of phosphorylation was retained in the cytoplasm in oocytes and embryos through the gastrula stage. The cytoplasmic form of xnf7 was detected in a large 670-kDa protein complex probably consisting of xnf7 and several other unknown protein components. Anchoring of xnf7 was not dependent on association with either microtubule or microfilament components of the cytoskeleton, since treatment with cytochalasin B and nocodazole did not affect cytoplasmic retention. Both wild-type xnf7 and xnf7thr-glu form dimers in the yeast two-hybrid system; however, homodimerization was not required for cytoplasmic retention. We suggest that the cytoplasmic retention of xnf7 depends on the phosphorylation state of the protein whereas the cytoplasmic anchoring machinery appears to be constitutively present in oocytes and throughout development until the gastrula stage.  相似文献   

16.
17.
At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.  相似文献   

18.
19.
Unfertilized eggs and fertilized embryos from Drosophila mothers mutant for the plutonium (plu) gene contain giant polyploid nuclei resulting from unregulated S-phase. The PLU protein, a 19-kDa ankyrin repeat protein, is present in oocytes and early embryos but is not detectable after the completion of the initial rapid S-M cycles of the embryo. The persistence of the protein during the early embryonic divisions is consistent with a direct role in linking S-phase and M-phase. When ectopically expressed in the eye disc, PLU did not perturb the cell cycle, suggesting that PLU regulates S-phase only in early embryonic development. The pan gu (png) and giant nuclei (gnu) genes also affect the S-phase in the unfertilized egg and early embryo. We show that functional png is needed for the presence of PLU protein. By analyzing png mutations of differing severity, we find that the extent of the png mutant phenotype inversely reflects the level of PLU protein. Our data suggest that PLU protein is required at the time of egg activation and the completion of meiosis.  相似文献   

20.
The interstitial deletion D14 affecting the importin-alpha 2 gene of Drosophila, or imp-alpha 2(D14), causes recessive female sterility characterized by a block of nurse cell-oocyte transport during oogenesis. In wild-type egg chambers, the Imp-alpha 2 protein is uniformly distributed in the nurse cell cytoplasm with a moderate accumulation along the oocyte cortex. Cytochalasin D treatment of wild-type egg chambers disrupts the in vivo association of Imp-alpha 2 with F-actin and results in its release from the oocyte cortex and its transfer into nurse cell nuclei. Binding assay shows that the interaction of Imp-alpha 2 with F-actin, albeit not monomeric actin, requires the occurrence of NLS peptides. Phenotypic analysis of imp-alpha 2(D14) ovaries reveals that the block of nurse cell-oocyte transport results from the occlusion of the ring canals that constitute cytoplasmic bridges between the nurse cells and the oocyte. Immunohistochemistry shows that, although the Imp-alpha2 protein cannot be detected on the ring canals, the Kelch protein, a known ring canal component, fails to bind to ring canals in imp-alpha 2(D14) egg chambers. Since loss-of-function mutations of kelch results in a similar dumpless phenotype, we propose that the Imp-alpha 2 protein plays a critical role in Kelch function by regulating its deposition on ring canals during their assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号