首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many older patients, because of their high prevalence of coronary artery disease, are candidates for percutaneous coronary interventions (PCI), but the effects of vascular aging on restenosis after PCI are not yet well understood. Balloon injury to the right carotid artery was performed in adult and old rats. Vascular smooth muscle cell (VSMC) proliferation, apoptotic cell death, together with Akt induction, telomerase activity, p27kip1, and endothelial nitric oxide synthase (eNOS) expression was assessed in isolated arteries. Neointima hyperplasia and vascular remodeling along with endothelial cell regeneration were also measured after balloon injury. Arteries isolated from old rats exhibited a significant reduction of VSMC proliferation and an increase in apoptotic death after balloon injury when compared with adult rats. In the vascular wall of adult rats, balloon dilation induced Akt phosphorylation, and this was barely present in old rats. In arteries from old rats, Akt-modulated cell cycle check points like telomerase activity and p27kip1 expression were decreased and increased, respectively, compared with adults. After balloon injury, old rats showed a significant reduction of neointima formation and an increased vascular negative remodeling compared with adults. These results were coupled by a marked delay in endothelial regeneration in aged rats, partially mediated by a decreased eNOS expression and phosphorylation. Interestingly, chronic administration of L-arginine prevented negative remodeling and improved reendothelialization after balloon injury in aged animals. A decreased neointimal proliferation, an impaired endothelial regeneration, and an increase in vascular remodeling after balloon injury were observed in aged animals. The molecular mechanisms underlying these responses seem to be a reduced Akt and eNOS activity.  相似文献   

2.
Multiple studies have demonstrated that 4-1BB (CD137), a member of the TNF receptor superfamily, is expressed on several immune cells including activated T cells. However, the expression and the role of 4-1BB on natural killer T (NKT) cells have not been fully characterized. In this study, it was shown that 4-1BB was not expressed on naive NKT cells but was rapidly induced on activated NKT cells by TCR engagement with alpha-galactosylceramide (alpha-GalCer). Also, 4-1BB signaling provided by 3H3, an agonistic anti-4-1BB mAb, promoted NKT cell activation resulting in enhanced cytokine production of NKT cells driven by alpha-GalCer. When NKT cell-driven airway immune responses were evaluated by intranasal administration of alpha-GalCer, airway hyperresponsiveness (AHR) and lung inflammation were significantly more aggravated in mice treated with 3H3 and alpha-GalCer than in mice treated with alpha-GalCer alone. These aggravations were accompanied by up-regulation of IL-4, IL-13, and IFN-gamma production. Interestingly, AHR was not developed in IL-4Ralpha-deficient mice treated with alpha-GalCer with or without 3H3 but was exacerbated in IFN-gamma-deficient mice. Our study suggests that 4-1BB on NKT cells functions as a costimulatory molecule and exacerbates the induction of NKT cell-mediated AHR, which is dependent on the IL-4Ralpha-mediated pathway.  相似文献   

3.

Background

Exposure to a moderate to high dose of ionizing radiation (IR) not only causes acute radiation syndrome but also induces long-term (LT) bone marrow (BM) injury. The latter effect of IR is primarily attributed to the induction of hematopoietic stem cell (HSC) senescence. Granulocyte colony-stimulating factor (G-CSF) is the only treatment recommended to be given to radiation victims soon after IR. However, clinical studies have shown that G-CSF used to treat the leukopenia induced by radiotherapy or chemotherapy in patients can cause sustained low white blood cell counts in peripheral blood. It has been suggested that this adverse effect is caused by HSC and hematopoietic progenitor cell (HPC) proliferation and differentiation stimulated by G-CSF, which impairs HSC self-renewal and may exhaust the BM capacity to exacerbate IR-induced LT-BM injury.

Methods

C57BL/6 mice were exposed to 4 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 1.08 Gy per minute, and the mice were treated with G-CSF (1 μg/each by ip) or vehicle at 2 and 6 h after TBI on the first day and then twice every day for 6 days. All mice were killed one month after TBI for analysis of peripheral blood cell counts, bone marrow cellularity and long-term HSC (CD34-lineage-sca1+c-kit+) frequency. The colony-forming unit-granulocyte and macrophage (CFU-GM) ability of HPC was measured by colony-forming cell (CFC) assay, and the HSC self-renewal capacity was analyzed by BM transplantation. The levels of ROS production, the expression of phospho-p38 mitogen-activated protein kinase (p-p38) and p16INK4a (p16) mRNA in HSCs were measured by flow cytometry and RT-PCR, respectively.

Results

The results of our studies show that G-CSF administration mitigated TBI-induced decreases in WBC and the suppression of HPC function (CFU-GM) (p < 0.05), whereas G-CSF exacerbated the suppression of long-term HSC engraftment after transplantation one month after TBI (p < 0.05); The increase in HSC damage was associated with increased ROS production, activation of p38 mitogen-activated protein kinase (p38), induction of senescence in HSCs.

Conclusion

Our findings suggest that although G-CSF administration can reduce ARS, it can also exacerbate TBI-induced LT-BM injury in part by promoting HSC senescence via the ROS-p38-p16 pathway.
  相似文献   

4.
The effects of chronic mild prenatal stress on leukocyte infiltration into the airways was investigated in rat offspring. The chronic prenatal stress consisted of transitory and variable changes in the rat's living conditions. Offspring at adult age were actively sensitized (day 0) and intratracheally challenged (day 14) with ovalbumin. Bronchoalveolar lavage was performed in the offspring at 48 h after intratracheal challenge with ovalbumin. A significant increase in total leukocyte infiltration was observed in the non-stressed offspring group and this was associated with a marked recruitment of eosinophils without a significant effect on the influx of neutrophils and mononuclear cells. In the prenatal stressed offspring, the counts of both total leukocyte and eosinophils, as well as mononuclear cells, was increased by 50% compared to the non-stressed offspring. We provide here the first experimental evidence that chronic mild unpredictable prenatal stress produces a marked increase in the allergen-induced airway inflammation in the rat offspring.  相似文献   

5.

Background

Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.

Methodology/Principal Findings

We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.

Conclusion/Significance

CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.  相似文献   

6.
Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the expression of cell surface glycosylation of airway epithelial cells after injury is not known. We examined cell surface glycosylation using lectin-binding profiles of normal and repairing epithelia in Hartley guinea pigs from 0 to 14 days after mechanical injury. The epithelium regenerated completely over 7 days. In normal trachea, galactose- or galactosamine-specific lectins (14 of 20 tested) labelled epithelial cells, but fucose, mannose, and other sugar-specific lectins (15 tested) did not. GSA-2, a glucosamine-specific lectin, labelled epithelial cells weakly in uninjured tracheas, but intense labelling was noted in basal and non-ciliated columnar cells adjacent to the injury site over 3h to 14 days after injury. Labelling of these cells peaked at 12h and 5 days after injury respectively. Similar patterns were seen with lectins AlloA and HAA but not with CPA during repair. The binding of the lectin DSA to proteins collected from primary cultures of airway epithelial cells decreased substantially after treatment for 24h with either transforming growth factor- or interleukin-1, but that of the CPA lectin did not. We demonstrate changes in glycosylation profiles of airway epithelial cells coordinate with repair after mechanical injury. These changes may be useful to study mechanisms by which repair is regulated.  相似文献   

7.
Patients with acute kidney injury (AKI) have increased serum proinflammatory cytokines and an increased occurrence of respiratory complications. The aim of the present study was to examine the effect of renal and extrarenal cytokine production on AKI-mediated lung injury in mice. C57Bl/6 mice underwent sham surgery, splenectomy, ischemic AKI, or ischemic AKI with splenectomy and kidney, spleen, and liver cytokine mRNA, serum cytokines, and lung injury were examined. The proinflammatory cytokines IL-6, CXCL1, IL-1β, and TNF-α were increased in the kidney, spleen, and liver within 6 h of ischemic AKI. Since splenic proinflammatory cytokines were increased, we hypothesized that splenectomy would protect against AKI-mediated lung injury. On the contrary, splenectomy with AKI resulted in increased serum IL-6 and worse lung injury as judged by increased lung capillary leak, higher lung myeloperoxidase activity, and higher lung CXCL1 vs. AKI alone. Splenectomy itself was not associated with increased serum IL-6 or lung injury vs. sham. To investigate the mechanism of the increased proinflammatory response, splenic production of the anti-inflammatory cytokine IL-10 was determined and was markedly upregulated. To confirm that splenic IL-10 downregulates the proinflammatory response of AKI, IL-10 was administered to splenectomized mice with AKI, which reduced serum IL-6 and improved lung injury. Our data demonstrate that AKI in the absence of a counter anti-inflammatory response by splenic IL-10 production results in an exuberant proinflammatory response and lung injury.  相似文献   

8.
9.

Background

Bronchiolitis obliterans (BO) is a fibrotic lung disease that occurs in a variety of clinical settings, including toxin exposures, autoimmunity and lung or bone marrow transplant. Despite its increasing clinical importance, little is known regarding the underlying disease mechanisms due to a lack of adequate small animal BO models. Recent epidemiological studies have implicated exposure to diacetyl (DA), a volatile component of artificial butter flavoring, as a cause of BO in otherwise healthy factory workers. Our overall hypothesis is that DA induces severe epithelial injury and aberrant repair that leads to the development of BO. Therefore, the objectives of this study were 1) to determine if DA, delivered by intratracheal instillation (ITI), would lead to the development of BO in rats and 2) to characterize epithelial regeneration and matrix repair after ITI of DA.

Methods and Main Results

Male Sprague-Dawley rats were treated with a single dose of DA (125 mg/kg) or sterile water (vehicle control) by ITI. Instilled DA resulted in airway specific injury, followed by rapid epithelial regeneration, and extensive intraluminal airway fibrosis characteristic of BO. Increased airway resistance and lung fluid neutrophilia occurred with the development of BO, similar to human disease. Despite rapid epithelial regeneration after DA treatment, expression of the normal phenotypic markers, Clara cell secretory protein and acetylated tubulin, were diminished. In contrast, expression of the matrix component Tenascin C was significantly increased, particularly evident within the BO lesions.

Conclusions

We have established that ITI of DA results in BO, creating a novel chemical-induced animal model that replicates histological, biological and physiological features of the human disease. Furthermore, we demonstrate that dysregulated epithelial repair and excessive matrix Tenacin C deposition occur in BO, providing new insights into potential disease mechanisms and therapeutic targets.  相似文献   

10.
11.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used alpha-tocopherol transfer protein knockout (alpha-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

12.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used α-tocopherol transfer protein knockout (α-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F2α (8-iso-PGF2α) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

13.
Aging is the single biggest risk factor for malignant transformation. Among the most common age-associated malignancies are non-melanoma skin cancers, comprising the most common types of human cancer. Here we show that mutant H-Ras activation in mouse epidermis, a frequent event in cutaneous squamous cell carcinoma (SCC), elicits a differential outcome in aged versus young mice. Whereas H-Ras activation in the young skin results in hyperplasia that is mainly accompanied by rapid hair growth, H-Ras activation in the aged skin results in more dysplasia and gradual progression to in situ SCC. Progression is associated with increased inflammation, pronounced accumulation of immune cells including T cells, macrophages and mast cells as well as excessive cell senescence. We found not only an age-dependent increase in expression of several pro-inflammatory mediators, but also activation of a strong anti-inflammatory response involving enhanced IL4/IL10 expression and immune skewing toward a Th2 response. In addition, we observed an age-dependent increase in the expression of Pdl1, encoding an immune suppressive ligand that promotes cancer immune evasion. Moreover, upon switching off oncogenic H-Ras activity, young but not aged skin regenerates successfully, suggesting a failure of the aged epidermal stem cells to repair damaged tissue. Our findings support an age-dependent link between accumulation of senescent cells, immune infiltration and cancer progression, which may contribute to the increased cancer risk associated with old age.The convergence between aging and cancer harbors a unique dichotomy: whereas uncontrolled cell proliferation is one of cancer hallmarks, aging is associated with a gradual decay in tissue regeneration and overall compensatory proliferative capacity. Yet, aging remains the strongest single risk factor for cancer development.1, 2 One example of an age-related cancer is cutaneous squamous cell carcinoma (SCC).3 SCC, the second most common skin cancer after basal cell carcinoma, commonly develops in sun-exposed skin and is prevalent in two main human groups, the elderly and organ transplant recipients.4 Both of these are paradigms of reduced immune competence, underscoring the role of the immune system in SCC biology. The immune system has a key role in eliminating incipient tumor cells, a process known as immune surveillance,5 demonstrated by the susceptibility of Tcrδ−/− mice, lacking γδ T cells, to DMBA/TPA-induced skin cancer.6 As such, the gradual deterioration in immune response with advanced age, also known as immunosenescence,7 is one of several theories aiming to explain the convergence between aging and cancer.8, 9 Adaptive immunity is considered to be more affected by aging than innate immunity, as reflected by the inability of old individuals to mount an effective humoral response.10 This is partially due to reduced lymphopoiesis, associated with events such as thymic involution11 and age-dependent skewing of hematopoietic stem cell commitment toward myeloid lineage differentiation.12, 13 Age-dependent dysfunction of adaptive immunity can also result from intrinsic changes within different lymphocytic lineages. Senescence of immune cells was reported in both CD4+ and CD8+ lymphocytes,14, 15 and is mainly characterized by loss of CD28 expression.16 This outcome is mostly associated with chronic exposure to viral infections like CMV or EBV,15 but exposure of normal T cells to cancer cells can also induce a senescence-like phenotype in T cells, characterized by loss of CD28 expression and upregulation of p53, p21 and p16.17Although the immune system has an important role in preventing tumor growth, it can also promote cancer development and support tumor proliferation, invasion and metastasis.18 Several adverse conditions characterized by chronic inflammation, such as inflammatory bowel disease.19 and chronic liver inflammation20 are known risk factors for cancer development. In addition, dermal atrophy accompanied by chronic stromal inflammation, caused by mesenchyme-dependent inhibition of Notch signaling, was found to be a driver for multifocal SCC development.21 In fact, chronic inflammation promoted by immune cells was recently recognized as one of the cancer hallmarks.22 Increased inflammation can occur in a variety of normal-aged tissues, a phenomenon dubbed inflammaging.23 This is partly attributed to accumulating senescent cells, observed in aged tissues.24 Such cells secrete a plethora of pro-inflammatory molecules, in a process termed senescence-associated secretory phenotype (SASP).25 This is believed to promote age-related diseases as well as support malignant growth.24 Age-related inflammation is also believed to contribute to the dwindling regenerative capacity of aged adult stem cells.12, 26 SCC can originate in hair follicle stem cells (HF-SC),27 raising the question whether inflammation can promote the neoplastic transformation of these adult epidermal stem cells.Here we describe the use of a transgenic mouse strain expressing activated mutant H-Ras in the epidermis to elucidate the differential response of young versus aged animals to such oncogenic trigger.  相似文献   

14.
Lou Z  Chen J 《Experimental cell research》2006,312(14):2641-2646
Aging is a complex process that results in functional decline and mortality of the organisms. On the cellular lever, cellular senescence has been used as a model for aging. Therefore, understanding cellular senescence has important health implications. Initial observations suggest that cellular senescence is the result of telomere shortening. Recent findings suggest that cellular senescence could be triggered by DNA damage. In fact, both telomere shortening and DNA-damage-induced cellular senescence share a common mechanism, the DNA damage response pathway. This review will discuss the link between DNA repair defects and cellular senescence.  相似文献   

15.
16.
17.
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1?/?) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1?/? mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1?/? mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1?/? mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.  相似文献   

18.
Matsumoto, Koichiro, Hisamichi Aizawa, Hiromasa Inoue,Mutsumi Shigyo, Shohei Takata, and Nobuyuki Hara. Thromboxane causes airway hyperresponsiveness after cigarette smoke-induced neurogenic inflammation. J. Appl.Physiol. 81(6): 2358-2364, 1996.We investigatedthe role of neurogenic inflammation and the subsequent mechanisms incigarette smoke-induced airway hyperresponsiveness in guinea pigs.Exposure to cigarette smoke was carried out at tidal volume for 3 min.Airway responsiveness to histamine was determined before and aftersmoke exposure followed by bronchoalveolar lavage (BAL). Plasmaextravasation was evaluated by measuring the extravasation of Evansblue dye in the airway. Cigarette smoke produced significant airwayhyperresponsiveness and plasma extravasation, with an influx ofneutrophils in BAL fluid. FK-224 (10 mg/kg iv), a tachykinin antagonistat NK1 andNK2 receptors, significantly inhibited these changes. The thromboxane (Tx)B2 concentration was increased inBAL fluid after smoke exposure and was significantly inhibited byFK-224. OKY-046 (10 mg/kg iv), a Tx synthase inhibitor, significantlyinhibited airway hyperresponsiveness but had no effect on neutrophilinflux or plasma extravasation. The results suggest that neurogenicinflammation and the subsequent generation of Tx in the airway areimportant in the development of the airway hyperresponsiveness inducedby cigarette smoke.

  相似文献   

19.
The survival of patients suffering from severe liver damage depends heavily on the ability of the remaining hepatocytes to regenerate and replace the dead or dying cells; death usually occurs when the regenerating ability of the liver is compromised owing to heavy damage to the liver. The current approach to therapy aims only to block additional liver injury from hepatotoxicants or hepatic disease. It hepatocellular regeneration and tissue repair could be stimulated after hepatic damage by a therapeutically compatible mechanism, then it might be possible to prevent death arising from serious liver injury.  相似文献   

20.
During mucosal inflammation, a complex array of proinflammatory and protective mechanisms regulates inflammation and severity of injury. Secretion of anti-inflammatory mediators is a mechanism that is critical in controlling inflammatory responses and promoting epithelial restitution and barrier recovery. AnxA1 is a potent anti-inflammatory protein that has been implicated to play a critical immune regulatory role in models of inflammation. Although AnxA1 has been shown to be secreted in intestinal mucosal tissues during inflammation, its potential role in modulating the injury/inflammatory response is not understood. In this study, we demonstrate that AnxA1-deficient animals exhibit increased susceptibility to dextran sulfate sodium (DSS)-induced colitis with greater clinical morbidity and histopathologic mucosal injury. Furthermore, impaired recovery following withdrawal of DSS administration was observed in AnxA1 (-/-) animals compared with wild-type (WT) control mice that was independent of inflammatory cell infiltration. Since AnxA1 exerts its anti-inflammatory properties through stimulation of ALX/FPRL-1, we explored the role of this receptor-ligand interaction in regulating DSS-induced colitis. Interestingly, treatment with an ALX/FPRL-1 agonist, 15-epi-lipoxin A4 reversed the enhanced sensitivity of AnxA1 (-/-) mice to DSS colitis. In contrast, 15-epi-lipoxin A4 did not significantly improve the severity of disease in WT animals. Additionally, differential expression of ALX/FPLR-1 in control and DSS-treated WT and AnxA1-deficient animals suggested a potential role for AnxA1 in regulating ALX/FPRL-1 expression under pathophysiological conditions. Together, these results support a role of endogenous AnxA1 in the protective and reparative properties of the intestinal mucosal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号