首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA-binding protein Y14 binds preferentially to mRNAs produced by splicing and is a component of a multiprotein complex that assembles approximately 20 nucleotides upstream of exon-exon junctions. This complex probably has important functions in post-splicing events including nuclear export and nonsense-mediated decay of mRNA. We show that Y14 binds to two previously reported components, Aly/REF and RNPS1, and to the mRNA export factor TAP. Moreover, we identified magoh, a human homolog of the Drosophila mago nashi gene product, as a novel component of the complex. Magoh binds avidly and directly to Y14 and TAP, but not to other known components of the complex, and is found in Y14-containing mRNPs in vivo. Importantly, magoh also binds to mRNAs produced by splicing upstream (approximately 20 nucleotides) of exon- exon junctions and its binding to mRNA persists after export. These experiments thus reveal specific protein-protein interactions among the proteins of the splicing-dependent mRNP complex and suggest an important role for the highly evolutionarily conserved magoh protein in this complex.  相似文献   

2.
The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation.  相似文献   

3.

Background

The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids.

Principal Findings

Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function.

Significance

The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle.  相似文献   

4.
Drosophila Hsp27 is a small heat shock protein displaying exclusive nuclear localization both before and after heat shock. However, the mechanism implicated in this nuclear localization as well as the required sequences, are undefined. This study identifies the Hsp27 sequences mediating its nuclear localization. The generation of chimeric fusions between Hsp27 and Hsp23, a small heat shock protein displaying exclusive cytoplasmic localization, delineated a stretch of 15 amino acids containing a nuclear-targeting activity. Site-directed mutagenesis within this region unveiled the implication of three arginine residues (R54-R55-R56), which differentially combine to form a novel kind of nuclear localization signal (NLS). Abrogation of the nuclear localization signal activity indicated that Drosophila Hsp27 could still enter the nucleus to associate with nuclear speckles in a NLS-independent fashion. Mutagenesis of a putative nuclear export signal unveiled two leucine residues (L50 and L52) specifically involved in the association of Hsp27 to nuclear speckles and revealed novel nuclear structures formed by this Hsp27 mutant. The present study identifies two distinct sets of sequences respectively mediating the nuclear import of Hsp27 and its association to nuclear speckles. These two phenomena are uncoupled and can be separately abrogated.  相似文献   

5.
Mago Nashi, a protein initially shown to be essential in the development of the Drosophila oocyte, is highly conserved among species and shows no homology to any other known cellular proteins. Here we report the nucleotide sequence of a cDNA and a partial gene that encode rice Mago Nashi protein homologs. In addition, we present the tissue-specific expression pattern of mago nashi at the level of RNA and protein. The rice Mago Nashi protein shares at least 73% amino acid identity with all known animal homologs. Genomic DNA gel blot analysis indicates that two copies of the mago nashi gene exist in the rice genome, one of which has identical intron positions to those found in an Arabidopsis homolog. mago nashi is expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis. Evidence from Drosophila, Caenorhabditis elegans and human studies of Mago Nashi suggests that a major function of this protein is its involvement in RNA localization. The highly conserved amino acid sequence of all Mago Nashi protein homologs across kingdoms suggests that the plant version of this protein may similarly be involved in RNA localization.  相似文献   

6.
7.
8.
9.
Hair follicle cycling is a highly regulated and dynamic cellular process consisting of phases of growth, regression, and quiescence. The hairless (hr) gene encodes a nuclear factor that is highly expressed in the skin, where it appears to be an essential regulator during the regression in the catagen hair follicle. In hairless mice, as well as humans with congenital atrichia, the absence of hr protein initiates a premature and abnormal catagen due to defects in the signaling required for hair follicle remodeling. Here, we report that hr protein is a nuclear protein that is tightly associated with the nuclear matrix scaffold. Using a series of deletion constructs of the mouse hr gene, we monitored the sub-cellular localization of the recombinant protein by in situ immunolocalization and biochemical fractionation after nuclear matrix extraction of transiently transfected cells. We identified a novel nuclear matrix-targeting signal (NMTS) in the hr protein and mapped the domain to amino acid residues 111-186 of the mouse hr sequence. Furthermore, we provide evidence that this region not only mediates the interaction of hr with components of the nuclear architecture, but also specifies the sub-nuclear location of the hr protein to nuclear domains containing deacetylase activity. The N-terminal region directs hr to a speckled nuclear pattern that co-localizes with the histone deacetylase 3 (HDAC), but not with HDAC1 or HDAC7. Based on our findings, we propose that hr protein is part of a specific multi-protein repressor complex and that hr may be involved in chromatin remodeling.  相似文献   

10.
The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.  相似文献   

11.
12.
Yersinia type III secretion machines transport substrate proteins into the extracellular medium or into the cytoplasm of host cells. Translational hybrids, involving genes that encode substrates as well as reporter proteins that otherwise cannot travel the type III pathway, identified signals that promote transport of effector Yops into host cells. Signals for the secretion of substrates into high calcium media were hitherto unknown. By exploiting attributes of translational hybrids between yopR, whose product is secreted, and genes that encode impassable proteins that jam the secretion machine, we isolated yopR mutations that abolish substrate recognition. Similar to effector Yops, an N-terminal or 5' signal in codons 1-11 is required to initiate YopR into the type III pathway. YopR secretion cannot be completed and translational hybrids cannot impose a block without a second signal, positioned at codons 131-149. Silent mutations in the second signal abrogate function and the phenotype of other mutations can be suppressed by secondary mutations predicted to restore base complementary in a 3' stem-loop structure of the yopR mRNA.  相似文献   

13.
The mago nashi (mago) locus is a newly identified strict maternal effect, grandchildless-like, gene in Drosophila melanogaster. In homozygous mutant mago females reared at 17 degrees C, mago+ function is reduced, the inviable embryos lack abdominal segments and 84-98% of the embryos die. In contrast, at 25 degrees C, some mago alleles produce a novel gene product capable of inducing the formation of symmetrical double abdomen embryos. Reciprocal temperature-shift experiments indicate that the temperature-sensitive period is during oogenetic stages 7-14. Furthermore, embryos collected from mago1 homozygous females contain no apparent functional posterior determinants in the posterior pole. In viable F1 progeny from mago mutant females, regardless of genotype and temperature, polar granules are reduced or absent and germ cells fail to form (the grandchildless-like phenotype). Thus, we propose that the mago+ product is a component of the posterior determinative system, required during oogenesis, both for germ cell determination and delineation of the longitudinal axis of the embryo.  相似文献   

14.
15.
The influence of mRNA localization on metallothionein-1 protein distribution was studied by immunocytochemistry. We used Chinese hamster ovary cells that had been transfected with either a native metallothionein-1 gene construct or metallothionein-1 5'-untranslated region and coding sequences linked to the 3'-untranslated region from glutathione peroxidase. The change in the 3'-untranslated region caused the delocalization of the mRNA with a loss of the perinuclear localization and association with the cytoskeleton. Clones were selected which expressed similar levels of metallothionein-1 protein, as assessed by radioimmunoassay. The results showed that loss of metallothionein-1 mRNA localization was associated with a loss of metallothionein-1 protein localization, most notably with a lack of metallothionein-1 protein in the nucleus of synchronized cells which were beginning to synthesize DNA. This indicates that the association of metallothionein-1 mRNA with the cytoskeleton around the nucleus is essential for efficient shuttling of the protein into the nucleus during the G(1) to S phase transition. This is the first demonstration of a physiological role for perinuclear mRNA localization and we propose that such localization may be important for a wide range of nuclear proteins, including those that shuttle between nucleus and cytoplasm in a cell cycle dependent manner.  相似文献   

16.
The DnaK chaperone system, consisting of DnaK, DnaJ, and GrpE, remodels and refolds proteins during both normal growth and stress conditions. CbpA, one of several DnaJ analogs in Escherichia coli, is known to function as a multicopy suppressor for dnaJ mutations and to bind nonspecifically to DNA and preferentially to curved DNA. We found that CbpA functions as a DnaJ-like co-chaperone in vitro. CbpA acted in an ATP-dependent reaction with DnaK and GrpE to remodel inactive dimers of plasmid P1 RepA into monomers active in P1 DNA binding. Additionally, CbpA participated with DnaK in an ATP-dependent reaction to prevent aggregation of denatured rhodanese. The cbpA gene is in an operon with an open reading frame, yccD, which encodes a protein that has some homology to DafA of Thermus thermophilus. DafA is a protein required for the assembly of ring-like particles that contain trimers each of T. thermophilus DnaK, DnaJ, and DafA. The E. coli YccD was isolated because of its potential functional relationship to CbpA. Purified YccD specifically inhibited both the co-chaperone activity and the DNA binding activity of CbpA, suggesting that YccD modulates the activity of CbpA. We named the product of the yccD gene CbpM for "CbpA modulator."  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号