首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orchid Island, 92  km off the southeast coast of Taiwan, has the northernmost tropical forests in East Asia. We assessed effects of habitat management by Orchid Island inhabitants, the Yami people, on spider diversity by comparing assemblages collected from the ground to canopy among four habitats (natural forest, cultivated woodland, second growth forest and grasslands) that receive different degrees of disturbance. Species and guild composition did not differ among replicates of habitat but differed significantly among habitats. Variation in spider diversity was inversely correlated with vegetation density. Cultivated woodland subjected to an intermediate level of disturbances had a lower understory vegetation density than natural forest, but higher spider diversity. Neither insect abundance nor biomass varied significantly among habitats suggesting little room for effects of prey availability on spider diversity. It appears that the Yami people maintain high spider diversity on Orchid Island by generating novel habitat types with different vegetation structures and disturbance regimes.  相似文献   

2.
Oceanic islands are unique geographic systems that promote local adaptations and allopatric speciation in many of their highly endemic taxa. This is a common case in the Philippine Archipelago, where numerous unrelated taxa on islands have been inferred to have diversified in isolation. However, few cases have been reported in invertebrates especially among parasitic organisms. Here, we tested for biogeographical structure in novel populations of the “generalist" kleptoparasitic spider, Argyrodes lanyuensis Yoshida, Tso & Severinghaus, 1998 in the Philippines. Results showed that, in addition to Orchid/Lanyu Island, this species has a wide geographic distribution in the Philippine Archipelago. The estimated divergence time of this lineage using the mitochondrial cytochrome oxidase 1 (mt‐CO1) suggests that this species diverged ca 3.12 MYA, during the Pliocene. Two reciprocal monophyletic clades were elucidated in A. lanyuensis, but with limited differentiation across Pleistocene Aggregate Island Complex (PAIC) boundaries and modern‐day islands. However, in our analyses of morphological variation, we identified two phenotypically differentiated units in males (Orchid Island, Taiwan + Luzon, Philippine PAIC populations vs. Palawan + West Visayan + Mindanao PAIC populations). We infer that this species diverged in the southern portion of the Philippine Archipelago and only recently colonized Orchid Island. Our study provides new information on the extensive distribution of A. lanyuensis outside Orchid Island, Taiwan, but we documented a very limited geographically associated genetic variation. Our study points to behavioral phenomena such as foraging behavior as essential contributor to the evolutionary process of species diversification, in contrast to the traditionally invoked geographic drivers of divergence.  相似文献   

3.
The genetic ancestry of Polynesians can be traced to both Asia and Melanesia, which presumably reflects admixture occurring between incoming Austronesians and resident non-Austronesians in Melanesia before the subsequent occupation of the greater Pacific; however, the genetic impact of the Austronesian expansion to Melanesia remains largely unknown. We therefore studied the diversity of nonrecombining Y chromosomal (NRY) and mitochondrial (mt) DNA in the Admiralty Islands, located north of mainland Papua New Guinea, and updated our previous data from Asia, Melanesia, and Polynesia with new NRY markers. The Admiralties are occupied today solely by Austronesian-speaking groups, but their human settlement history goes back 20,000 years prior to the arrival of Austronesians about 3,400 years ago. On the Admiralties, we found substantial mtDNA and NRY variation of both Austronesian and non-Austronesian origins, with higher frequencies of Asian mtDNA and Melanesian NRY haplogroups, similar to previous findings in Polynesia and perhaps as a consequence of Austronesian matrilocality. Thus, the Austronesian language replacement on the Admiralties (and elsewhere in Island Melanesia and coastal New Guinea) was accompanied by an incomplete genetic replacement that is more associated with mtDNA than with NRY diversity. These results provide further support for the "Slow Boat" model of Polynesian origins, according to which Polynesian ancestors originated from East Asia but genetically mixed with Melanesians before colonizing the Pacific. We also observed that non-Austronesian groups of coastal New Guinea and Island Melanesia had significantly higher frequencies of Asian mtDNA haplogroups than of Asian NRY haplogroups, suggesting sex-biased admixture perhaps as a consequence of non-Austronesian patrilocality. We additionally found that the predominant NRY haplogroup of Asian origin in the Admiralties (O-M110) likely originated in Taiwan, thus providing the first direct Y chromosome evidence for a Taiwanese origin of the Austronesian expansion. Furthermore, we identified a NRY haplogroup (K-P79, also found on the Admiralties) in Polynesians that most likely arose in the Bismarck Archipelago, providing the first direct link between northern Island Melanesia and Polynesia. These results significantly advance our understanding of the impact of the Austronesian expansion and human history in the Pacific region.  相似文献   

4.
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.  相似文献   

5.
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ~9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (~3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.  相似文献   

6.
The Sakishima islands are members of the Ryukyu island chain, stretching from the southwestern tip of the Japanese archipelago to Taiwan in the East China Sea. Archaeological data indicate cultural similarities between inhabitants of prehistoric Sakishima and Neolithic Taiwan. Recent studies based on tooth crown traits show remarkably high inter‐island diversity among Ryukyu islanders, suggesting that the Sakishima islanders might have genetic backgrounds distinct from main‐island Okinawa people. To investigate the genetic diversity of the Ryukyu islanders, we analyzed mtDNA, Y chromosome, and autosomal short tandem repeat loci in a sample of main‐island Okinawa people and Sakishima (Miyako and Ishigaki) islanders whose participated in a previous study of tooth crown morphology. Our phylogenetic analysis of maternal (mtDNA) and paternal (Y chromosome) lineages shows that the Sakishima islanders are more closely related to people from the Japanese archipelago than to Taiwan aborigines. Miyako islanders and the Hokkaido Ainu have the first and second highest frequencies (respectively) of the Y‐chromosomal Alu‐insertion polymorphism, which is a presumable Jomon marker. Genetic diversity statistics show no evidence of demographic reduction or of extreme isolation in each island's population. Thus, we conclude that 1) Neolithic expansion from Taiwan did not contribute to the gene pool of modern Sakishima islanders, 2) male‐lineage of the Ryukyu islanders likely shares a common ancestor with the Hokkaido Ainu who are presumably direct descendants of the Jomon people, and 3) frequent reciprocal gene flow among islands has masked the trace of common ancestry in the Ryukyu island chain. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

8.

Background

Phylogenetic analysis of human complete mitochondrial DNA sequences has largely contributed to resolving phylogenies and antiquity of different lineages belonging to the majorhaplogroups L, N and M (East-Asian lineages). In the absence of whole mtDNA sequence information of M lineages reported in India that exhibits highest diversity within the sub-continent, the present study was undertaken to provide a detailed analysis of this haplogroup to precisely characterize the lineages and unravel their intricate phylogeny.

Results

The phylogenetic tree constructed from sequencing information of twenty four whole mtDNA genome revealed novel substitutions in the previously defined M2a and M6 lineages. The most striking feature of this phylogenetic tree is the formulation of a new lineage M30, distinguished by the presence of 12007 transition, and comprises of the recently defined M18 and a potential new sub-lineage possessing substitution at 16223 and 16300. M30 further branches into M30a sub-lineage, defined by 15431 and 195A substitution. The age of M30 lineage was estimated at 33,042 YBP, indicating a more recent expansion time than M2 (49,686 YBP). Contradictory to earlier reports, the M5 lineage does not always include a 12477 substitution, and is more appropriately defined by a transversion at 10986A. The phylogenetic tree also identifies a potential new lineage M* with HVSI sequence 16223,16325. No new substitutions were found in M25 and the M3 mt DNA genome could only be tentatively rooted by 16126 mutation. M4 and M*(16251, 16267) lineages could not be resolved distinctly.

Conclusions

This study describes seven new basal mutations and fourteen lineages that substantially contribute to the present understanding of superhaplogroup M. The phylogenetic tree supported by median-joining network helps in distinctly identifying the genetic relation between different M lineages that could not be achieved solely by control region sequence information. Although high control region diversity has been reported in the different M lineages distributed in India, complete sequencing of M* and defined lineages suggests that these mt DNA genomes emerged from a limited number of branches arising from the M trunk.  相似文献   

9.

Background  

Hainan Island is located around the conjunction of East Asia and Southeast Asia, and during the Last Glacial Maximum (LGM) was connected with the mainland. This provided an opportunity for the colonization of Hainan Island by modern human in the Upper Pleistocene. Whether the ancient dispersal left any footprints in the contemporary gene pool of Hainan islanders is debatable.  相似文献   

10.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two‐thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol 150:551–564, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.

Background

Rabies continues to be a major public health problem in the Philippines, where 200–300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy.

Methods

We performed a molecular analysis of rabies viruses in the Philippines using rabied animal brain samples. The samples were collected from 11 of 17 regions, which covered three island groups (Luzon, Visayas, and Mindanao). Partial nucleoprotein (N) gene sequencing was performed on 57 samples and complete glycoprotein (G) gene sequencing was performed on 235 samples collected between 2004 and 2010.

Results

The Philippine strains of rabies viruses were included in a distinct phylogenetic cluster, previously named Asian 2b, which appeared to have diverged from the Chinese strain named Asian 2a. The Philippine strains were further divided into three major clades, which were found exclusively in different island groups: clades L, V, and M in Luzon, Visayas, and Mindanao, respectively. Clade L was subdivided into nine subclades (L1–L9) and clade V was subdivided into two subclades (V1 and V2). With a few exceptions, most strains in each subclade were distributed in specific geographic areas. There were also four strains that were divided into two genogroups but were not classified into any of the three major clades, and all four strains were found in the island group of Luzon.

Conclusion

We detected three major clades and two distinct genogroups of rabies viruses in the Philippines. Our data suggest that viruses of each clade and subclade evolved independently in each area without frequent introduction into other areas. An important implication of these data is that geographically targeted dog vaccination using the island group approach may effectively control rabies in the Philippines.  相似文献   

12.
The time to the most recent common ancestor (TMRCA) of the human mitochondria (mtDNA) is estimated to be older than that of the nonrecombining portion of the Y chromosome (NRY). Surveys of variation in globally distributed humans typically result in mtDNA TMRCA values just under 200 thousand years ago (kya), whereas those for the NRY range between 46 and 110 kya. A favored hypothesis for this finding is that natural selection has acted on the NRY, leading to a recent selective sweep. An alternate hypothesis is that sex-biased demographic processes are responsible. Here, we re-examine the disparity between NRY and mtDNA TMRCAs using data collected from individual human populations--a sampling strategy that minimizes the confounding influence of population subdivision in global data sets. We survey variation at 782 bp of the mitochondrial cytochrome c oxidase subunit 3 gene as well as at 26.5 kb of noncoding DNA from the NRY in a sample of 25 Khoisan, 24 Mongolians, and 24 Papua New Guineans. Data from both loci in all populations are best described by a model of constant population size, with the exception of Mongolian mtDNA, which appears to be experiencing rapid population growth. Taking these demographic models into account, we estimate the TMRCAs for each locus in each population. A pattern that is remarkably consistent across all three populations is an approximately twofold deeper coalescence for mtDNA than for the NRY. The oldest TMRCAs are observed for the Khoisan (73.6 kya for the NRY and 176.5 kya for mtDNA), whereas those in the non-African populations are consistently lower (averaging 47.7 kya for the NRY and 92.8 kya for mtDNA). Our data do not suggest that differential natural selection is the cause of this difference in TMRCAs. Rather, these results are most consistent with a higher female effective population size.  相似文献   

13.
Aim Colonization of the Philippines from Taiwan or neighbouring areas of the Asian mainland has been proposed as an important source of diversity for some plant and animal groups in the northern Philippines. Previous inferences, however, were based on taxonomic groupings, which sometimes fail to reflect phylogenetic history. Here, we test for colonization of the Philippines from the north in a group of shrews (Soricomorpha: Crocidura) using explicit inferences of evolutionary history. Location Southeast Asia. Methods We estimate the phylogenetic relationships of populations of shrews from Batan and Sabtang islands in the northern Philippines using DNA sequences from two mitochondrial genes and three nuclear loci. We employ topology tests to evaluate the possible relationships of these shrews to species from throughout Southeast Asia. Results We find conclusive evidence that shrews from Batan and Sabtang are closely related to Crocidura tanakae from Taiwan and additional specimens from the Asian mainland. Bayesian and frequentist topology tests using alignments of individual loci strongly reject any notion that shrews from Batan and Sabtang are part of the main Philippine radiation of Crocidura, indicating that the northernmost Philippine islands were almost certainly colonized by shrews from Taiwan or mainland Asia. Main conclusions Our results provide the first compelling evidence for colonization of the Philippine archipelago by a terrestrial vertebrate via a northern route. Invasion of the northern Philippines by shrews, however, did not lead to further range expansion to more southerly parts of the Philippines. This study, combined with previous results, documents that Crocidura colonized the Philippines at least three times. However, only one of these invasions led to in situ speciation and ubiquity across the archipelago. Our findings are part of a growing body of literature suggesting that oceanic archipelagos are often colonized multiple times by groups of closely related species, and occasionally from multiple sources.  相似文献   

14.
The Egyptian Western Desert lies on an important geographic intersection between Africa and Asia. Genetic diversity of this region has been shaped, in part, by climatic changes in the Late Pleistocene and Holocene epochs marked by oscillating humid and arid periods. We present here a whole genome analysis of mitochondrial DNA (mtDNA) and high‐resolution molecular analysis of nonrecombining Y‐chromosomal (NRY) gene pools of a demographically small but autochthonous population from the Egyptian Western Desert oasis el‐Hayez. Notwithstanding signs of expected genetic drift, we still found clear genetic evidence of a strong Near Eastern input that can be dated into the Neolithic. This is revealed by high frequencies and high internal variability of several mtDNA lineages from haplogroup T. The whole genome sequencing strategy and molecular dating allowed us to detect the accumulation of local mtDNA diversity to 5,138 ± 3,633 YBP. Similarly, theY‐chromosome gene pool reveals high frequencies of the Near Eastern J1 and the North African E1b1b1b lineages, both generally known to have expanded within North Africa during the Neolithic. These results provide another piece of evidence of the relatively young population history of North Africa. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
I describe the habitat use, diet, and the male and female reproductive cycles of Japalura swinhonis, an oviparous agamid lizard inhabiting Orchid Island, a tropical island off the southeastern coast of Taiwan. Ninety percent of lizards (n=126) were observed on tree trunks or at the forest edge. The diet of J. swinhonis on Orchid Island consisted mostly of hymenopterans (53.33%) and orthopterans (16.67%). The mean snout-vent length (SVL) of adult males was 74.58 (n=89) and that of females was 69.31 (n=37) mm. Females exhibited a long vitellogenic period from November to February, with parturition occurring from March to October. The onset of vitellogenesis did not correlate with the mass of the female fat bodies. Females produced two to five eggs per clutch, and clutch size was not correlated with SVL. Two clutches were recorded during a single year in some individuals. Clutch size in J. swinhonis was compared with that in other Japalura species. Clutch sizes of Japalura species are larger in mainland China than on insular Taiwan. Clutch size is also mainly affected by environmental constraints, and smaller clutch sizes are probably affected by predators on Orchid Island.  相似文献   

16.
Anthropologists have long been fascinated by the isolated hunter-gatherer populations in Southeast Asia (SEA) collectively known as "Negritos." However, the origins and affinities of these groups remain unresolved. Negritos are characterized by their short stature, dark skin color, and wiry hair, and they inhabit the Philippines, Malay Peninsula, and the Andaman Islands. Among Philippine Negritos, the Batak are of particular interest in understanding population interactions in the region due to their location on Palawan Island, which likely formed a corridor by which human migrations entered the rest of the Philippine archipelago from Island SEA. Here, we extend current understanding of the distribution of genetic diversity in Negritos by presenting the first analysis of mitochondrial DNA and Y-chromosome diversity among the Batak. We show that the Batak are genetically distinct from Negritos of the Andaman Islands and Malay Peninsula and instead bear most resemblance to geographically proximate Philippine Negritos and to non-Negrito populations from the Philippines and Island SEA. An extensive degree of recent admixture between the Batak and their neighbors is indicated by the high frequency of recently coalescing haplogroups in the Batak that are found throughout Island SEA. The comparison of results from these two loci further lends support to the hypothesis that male-biased admixture has, in particular, been a prominent feature of the interactions between the Batak and surrounding non-Negrito populations.  相似文献   

17.
The "Polynesian motif" defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ~4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3-4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a "voyaging corridor" between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.  相似文献   

18.

Background

Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.

Results

Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.

Conclusions

Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.  相似文献   

19.
The Philippines is generally believed to have been established by various peoples who migrated from neighboring areas. To gain new insights into the peopling of the Philippines, we used the JC virus (JCV) genotyping approach. We collected about 50 urine samples on each of two representative islands of the Philippines, Luzon and Cebu. DNA was extracted from the urine samples and used to amplify the 610-bp region (IG region) of the viral genome. For each island, we determined about 20 IG sequences, from which a neighbor-joining phylogenetic tree was constructed to classify the JCV isolates detected into distinct genotypes. The predominant genotype detected was SC, the Southeast Asian genotype. Minor JCV genotypes were SC/Phi, B1-a, and B3. SC/Phi was a subcluster of SC and has not been detected in areas other than the Philippines. B1-a was detected previously in mainland China, Pamalican Island (Palawan, Philippines), and Taiwan (an aboriginal tribe). B3 was classified in this study into two subgroups, one (B3-a) containing three Luzon isolates and several Chinese, Thai, and Uzbek isolates, the other (B3-b) containing two Luzon, one Cebu, and one Indonesian isolate. These findings suggest that the modern Filipino population was formed not only by Southeast Asians carrying SC but also by a few distinct ethnic groups carrying SC/Phi, B1-a, and B3-a or -b.  相似文献   

20.
Pachyrhynchus sonani Kôno, 1930, a legally protected species in Taiwan, is endemic to Lanyu Island (Orchid Island) and Ludao Island (Green Island). Because of its unclear life history, the host and immature stages of this species in the wild have not so far been recorded. On Lanyu Island, we recently identified Barringtonia asiatica as a host plant of P. sonani, with several larvae feeding on its xylem. Herein, we describe its biology and the habitat surrounding the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号