首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term data on the specific composition, seasonal abundance, and biomass dynamics of Lake Teletskoye zooplankton are given. The list of rotiferans and lower crustaceans includes 117 taxa of specific and subspecific rank. The dominating complex includes 10 species and remains unchanged during the whole period of investigations. The seasonal dynamics of zooplankton abundance and biomass in this deep and highly lotic oligotrophic waterbody is characterized by one peak of development noted in the second half of the summer. The rapid increase of Conochilus unicornis (Rousselet) rotifer abundance in conditions of high water level and low temperature is noted in the interannual aspect.  相似文献   

2.
The patterns of the seasonal dynamics of species composition, abundance, biomass, and ration of zooplankton in the Curonian Lagoon of the Baltic Sea have been considered. It is shown that zooplankton can consume up to 17–21% of the phytoplankton primary production. Of this, 7–8% of the primary production is transformed into secondary production and can be used by invertebrates and fishes. The structural and functional characteristics of zooplankton (index and coefficient of the trophic state, the number of dominating species, and the Shannon index by biomass) can be used to assess the waterbody trophic state.  相似文献   

3.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

4.
甬江干流浮游动物群落结构季节动态与水环境的关系   总被引:1,自引:0,他引:1  
对采自2011年3月-2012年2月间甬江干流13个断面的水样, 按照国家标准测试了9项理化指标, 并应用浮游动物定性和定量方法, 研究了浮游物群落结构特点和季节变化. 研究共记录浮游动物95种, 其中轮虫24属72种、枝角类5属10种、桡足类11属13种和4种其他门类无脊椎动物幼虫; 优势种主要来自于轮虫动物的臂尾轮虫属(Brachionus)和龟甲轮虫属(Keratella), 前者占了浮游动物总丰度的22.1%, 后者占总丰度的20.2%. 浮游动物的丰度值在各断面均呈明显的季节变化, 从断面1至断面6, 最大峰值出现在春季, 从断面7至断面13, 最大峰值多出现在夏季; 全干流最大峰值出现在断面5 (3160 ind./L). 浮游动物群落生物多样性指数呈上游段低, 中、下游河段高的现象; 应用中度干扰假说(Intermediate disturbance hypothesis)对此结果给予了解释. Two-way ANOSIM相似性分析和Bray-Curtis相似性等级聚类分析显示: 不同断面上不同季节的浮游动物群落间均存在显著差异, 分别为R=0.264、P=0.1%和R=0.234、P=0.1%, 且季节性差异大于断面间差异. 在季节性差异中以春季和夏季间的差异性最大. 主成分分析(PCA)表明: 对不同断面浮游动物群落起作用的理化因子依次为CODCr、TN、DO和BOD5; 对不同季节浮游动物群落起作用的理化因子依次为pH、TN/TP、盐度和水温.    相似文献   

5.
Small ponds ( ≤ 2 ha) are often a common landscape feature, but their ecology has been less well studied than that of lakes. Studies of some lakes and reservoirs show among-year repeatability in the seasonal abundance of different zooplankton (i.e., succession). For small ponds the seasonal dynamics of zooplankton community structure are relatively unstudied, as are any mechanisms underlying these dynamics. We took a community-level approach to studying the spring–summer abundance of zooplankton in two small Ohio ponds. In particular we wanted to know if repeatable patterns exist for zooplankton community structure in these ponds. We surveyed the spring–summer zooplankton communities in the ponds from 2001 to 2003 and used community-level ordination techniques (i.e., non-metric multidimensional scaling, NMDS) to characterize the assemblages. For both ponds the seasonal pattern of total zooplankton abundance differed significantly among years. We found that the proportional abundance of taxa across the season also varied among years. Elements of the zooplankton community, as described by the NMDS dimensions, showed among-year variation in the spring–summer trajectories that developed. Some of the variation in these zooplankton communities was associated with seasonal changes in water temperature. This among-year variation in the seasonal pattern of zooplankton community structure suggests that community dynamics in these small ponds may not be very repeatable. These complex dynamics of zooplankton thus challenges us to improve our characterization of zooplankton communities in small ponds such that we can better understand the factors that drive the patterns we observe.  相似文献   

6.
The species composition,biomass,abundance,and species diversity of zooplankton were determined for samples collected from August 2002 to May 2003 from 14 stations in Yueqing Bay,China.Phytoplankton growth rate and microzooplankton grazing rate were obtained by using the dilution method developed by Landry and Hassett.The spatial and temporal variations of zooplankton and its relationship with environmental factors were also analyzed.The results showed that the zooplankton in the Yueqing Bay could be divided into four ecotypes,namely coastal low saline species,estuary brackish water species,offshore warm water species,and eurytopic species.A total of 75 species of zooplankton belonging to 56 genera and 17 groups of pelagic larva were identified in the Yueqing Bay.The coastal low saline species was the dominant ecotype in the study area,and the dominant species were Labidocera euchaeta,Acartia pacifica,Acrocalanus gibber,Pseudeuphausia sinica,and Sagitta bedoti among others.There was considerable seasonal variation in zooplankton biomass and abundance in the surveyed areas.The peak biomass appeared in August,descending in November and in May,and the lowest biomass appeared in February.Similarly,the highest abundance of zooplankton was observed in August,with the abundance descending in the following months:May,November,and February.There were similar horizontal distribution patterns for the biomass and the abundance of zooplankton.They both increased from the upper to the lower bay in February and May,but decreased from the upper to the lower bay in August.Biomass and abundance were evenly distributed in the Yueqing Bay in November.Moreover,there was marked seasonal variation in the species diversity of zooplankton,which conformed to the abundance of zooplankton.Results of the dilution experiments indicated that there was grazing pressure of microzooplankton on phytoplankton in the Yueqing Bay throughout the year though the rate of microzooplankton grazing on phytoplankton varied seasonally.Phytoplanktons were growing at 0.26-2.07/d and grazed by microzooplankton at a rate of 0.15--0.48/d in different seasons.  相似文献   

7.
Although floodplains are known to be tightly controlled by the flood cycle, we know comparatively little about how flooding influences predators and their consumption of secondary production, particularly in highly seasonal floodplains typical of Mediterranean climates. In this study, we investigate how the seasonal dynamics of a central California floodplain influence the timing and magnitude of fish predation and the abundance and composition of invertebrates. For 3 years (2000–2002), we compared changes in abundances and size distributions of invertebrates through the flood season (January–June) with seasonal changes in the abundance of larval and juvenile fishes. Using diet analysis of fishes and manipulative feeding experiments with fishes in field enclosures, we link specific changes in invertebrate populations directly to feeding preferences of seasonally abundant fish. Early in the flood season prior to March, we found little influence of fish predation, consistent with the near absence of larval and juvenile fishes during this period. Coinciding with the midseason increase in the abundance of larval and juvenile fishes in April, we found significant declines in zooplankton abundance as well as declines in the size of zooplankton consistent with fish feeding preferences. Our results were consistent with results from feeding enclosure experiments that showed that fish rapidly depressed populations of larger cladocerans with much less effect on smaller cladocerans and calanoid copepods. At the end of the flood season, zooplankton abundances rapidly increased, consistent with a switch in the feeding of juvenile fish to aquatic insects and subsequent fish mortality. We also found that zooplankton biomass on the floodplain reached a maximum 2–3 weeks after disconnection with the river. We suggest that floodplain restoration in this region should consider management strategies that would ensure repeated flooding every 2–3 weeks during periods that would best match the peaks in abundance of native fishes. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

8.
The species composition, biomass, abundance, and species diversity of zooplankton were determined for samples collected from August 2002 to May 2003 from 14 stations in Yueqing Bay, China. Phytoplankton growth rate and microzooplankton grazing rate were obtained by using the dilution method developed by Landry and Hassett. The spatial and temporal variations of zooplankton and its relationship with environmental factors were also analyzed. The results showed that the zooplankton in the Yueqing Bay could be divided into four ecotypes, namely coastal low saline species, estuary brackish water species, offshore warm water species, and eurytopic species. A total of 75 species of zooplankton belonging to 56 genera and 17 groups of pelagic larva were identified in the Yueqing Bay. The coastal low saline species was the dominant ecotype in the study area, and the dominant species were Labidocera euchaeta, Acartia pacifica, Acrocalanus gibber, Pseudeuphausia sinica, and Sagitta bedoti among others. There was considerable seasonal variation in zooplankton biomass and abundance in the surveyed areas. The peak biomass appeared in August, descending in November and in May, and the lowest biomass appeared in February. Similarly, the highest abundance of zooplankton was observed in August, with the abundance descending in the following months: May, November, and February. There were similar horizontal distribution patterns for the biomass and the abundance of zooplankton. They both increased from the upper to the lower bay in February and May, but decreased from the upper to the lower bay in August. Biomass and abundance were evenly distributed in the Yueqing Bay in November. Moreover, there was marked seasonal variation in the species diversity of zooplankton, which conformed to the abundance of zooplankton. Results of the dilution experiments indicated that there was grazing pressure of microzooplankton on phytoplankton in the Yueqing Bay throughout the year though the rate of microzooplankton grazing on phytoplankton varied seasonally. Phytoplanktons were growing at 0.26–2.07/d and grazed by microzooplankton at a rate of 0.15–0.48/d in different seasons. __________ Translated from Acta Ecologica Sinica, 2005, 25(8): 1853–1862 [译自: 生态学报, 2005, 25(8): 1853–1862]  相似文献   

9.
Anthropogenic habitat alteration interferes the natural aquatic habitats and the system''s hydrodynamics in the Yangtze River floodplain lakes, resulting in a serious decline in freshwater biodiversity. Zooplankton communities possess major position in freshwater ecosystems, which play essential parts in maintaining biological balance of freshwater habitats. Knowledge of processes and mechanisms for affecting variations in abundance, biomass, and diversity of zooplankton is important for maintaining biological balance of freshwater ecosystems. Here, we analyzed that the temporal and spatial changes in the structure of zooplankton community and their temporal and spatial variations respond to changes in environmental factors in the middle reach of Yangtze River floodplain lakes. The results showed that zooplankton samples were classified into 128 species, and Rotifera was the most common taxa. Significant seasonal differences were found among the abundance and diversity of zooplankton. Similarly, we also found significant seasonal differences among the biomass of zooplankton functional groups. The spatial turnover component was the main contributor to the β diversity pattern, which indicated that study areas should establish habitat restoration areas to restore regional biodiversity. The NMDS plot showed that the structure of zooplankton community exhibited significant seasonal changes, where the community structure was correlated with pH, water temperature, water depth, salinity, total nitrogen, chlorophyll‐a, and total phosphorus based on RDA. This study highlights that it is very important to ensure the floodplain ecosystem''s original state of functionality for maintaining the regional diversity of the ecosystem as a whole.  相似文献   

10.
烟台四十里湾浮游动物群落特征及与环境因子的关系   总被引:3,自引:0,他引:3  
2009年3月—2010年12月在烟台四十里湾海域对浮游动物群落结构及其环境因子进行了连续20个航次的综合调查,记录到浮游动物8大类共计64种(类)。浮游动物主要类群为桡足类和浮游幼虫,分别发现22种、18类,占总种(类)数34%、28%;其次为水螅水母类,发现13种,占20%;毛颚动物和栉水母类各发现1种。浮游动物的优势种为中华哲水蚤(Y=0.183)、腹针胸刺水蚤(Y=0.078)、强壮箭虫(Y=0.078)和洪氏纺锤水蚤(Y=0.026)。浮游动物的生态类型主要为温带近岸种和广布性种。四十里湾海域浮游动物群落结构的季节变化较为明显,春、夏、秋、冬四季之间群落结构有显著性差异(P0.05),同一季节内群落结构相似度较高,达55%以上。浮游动物丰度中位值在5月份达到最高(546.3个/m~3);种类数、多样性指数中位值均在8月达到最高,分别为18种、3.20;浮游动物生物量呈现出双峰变化模型,5月份达到第1峰值(中位值870.4 mg/m~3),10月份为第2峰值(中位值362.0 mg/m~3)。浮游动物种类数高值区主要分布在养马岛北部海域,而丰度高值区主要分布在近岸尤其是辛安河口海域。浮游动物种类数及多样性指数与水温、化学需氧量、硅酸盐显著正相关(P0.01),与盐度、溶解氧、无机氮显著负相关(P0.01);水温和盐度是影响浮游动物分布的主要环境因子,其次是硅酸盐、叶绿素a和化学需氧量,活性磷酸盐、溶解氧、透明度以及无机氮对浮游动物分布的影响较小。  相似文献   

11.
The results of studies on the zooplankton in the cooler reservoir of the Chernobyl Nuclear Power Plant following the 1986 disaster are presented. The study region also included the waterbodies and watercourses situated within the 30-km-wide right-of-way zone. Species composition, vertical and horizontal distribution, abundance, and biomass have been studied. A total of 101 species of invertebrates were found: 43 species of rotifers, 42 cladocerans, and 16 copepods. Among all the species found, almost 90% of the total zooplankton abundance and biomass were composed of indicator species: representatives of g. Brachionus, Asplanchna priodonta, Synchaeta spp., Euchlanis dilatata, Chydorus sphaericus, Bosmina longirostris, and Acanthocyclops americanus. The veligers of zebra mussel were found in the plankton of the investigated water-bodies. In the Kiev Reservoir, their abundance during the summer period may be high: >1 million spec./m3).  相似文献   

12.
We examined the impacts of moderate gradient silver carp biomass (five levels from 0 to 36 g.m-3, i.e. about 0-792 kg.ha-1) on zooplankton communities of the eutrophic Villerest reservoir (France). During our mesocosm experiment changes in zooplankton assemblages were dependent on silver carp biomass. In the fishless and low fish biomass treatments, zooplankton abundance increased through time, owing to a peak in cladoceran density, but decreased (mainly cladocerans) at highest fish biomass. Copepods and rotifers were less affected at the highest fish biomass and dominated zooplankton communities. We highlighted that the presence of high silver carp biomass could lead to changes in phytoplankton assemblage via the impact on herbivorous zooplankton. Since silver carp efficiently graze on particles > 20 microns, the suppression of herbivorous cladocerans could result in an increase in small size algae (< 20 microns) abundance since these species would be released from grazers as well as competitors (large algae grazed by silver carp) and nutrients levels would be enhanced by fish internal loading. Our results showed that the use of low silver carp biomass (< 200 kg.ha-1) would allow us to minimize these negative effects.  相似文献   

13.
The species and size composition of zooplankton and its seasonal biomass dynamics are discussed and the consumption of zooplankton by nekton organisms is estimated from the results of 12 integrated expeditions of the Pacific Center of Scientific Fisheries performed during 1991–1996 in the region of the South Kuril Islands.  相似文献   

14.
南汇东滩湿地围垦水域内浮游动物群落结构的变化   总被引:2,自引:0,他引:2  
2010年10月-2011年7月对南汇东滩围垦水域和坝外自然水域的浮游动物进行调查,研究了两水域内浮游动物的种类组成、丰度、生物量、优势种和生物多样性等生态学特征参数的季节变化,并初步探讨了围垦内外水域浮游动物群落的结构差异,及其与盐度、水温和人类活动等环境因子的关系.结果表明:围垦水域和坝外自然水域共检获浮游动物30种,其中围垦水域浮游动物24种,以轮虫的种类数最多;坝外自然水域浮游动物14种,其中桡足类占绝对优势.围垦水域浮游动物的年平均丰度明显高于坝外自然水域,年平均生物量则相反.围垦水域以角突臂尾轮虫、萼花臂尾轮虫和广布中剑水蚤等淡水种为主要优势种,而坝外自然水域则以中华华哲水蚤、火腿许水蚤和虫肢歪水蚤等河口半咸水种为主要优势种,且两水域优势种均存在季节更替.坝外水域浮游动物Shannon多样性指数(H)值和Pielou均匀度指数(J)值均明显高于围垦水域,Margalef丰富度指数(d)值和单纯度指数(C)值低于围垦水域.群落聚类和MDS结果表明,围垦水域浮游动物的群落结构与坝外自然水域存在明显差异.围垦是引起被围水域浮游动物群落结构变化的主要原因,盐度、潮汐动力等是导致动物群落结构改变的主要环境因子.  相似文献   

15.
根据2015—2016年在福建北部近海水域(120.10°E—120.65°E, 26.35°N—27.07°N)夏、秋、冬、春4个季节的海洋生态调查资料, 探讨了该水域浮游动物的数量分布、季节变化及其与水团变化的关系。结果表明, 调查水域浮游动物的平均生物量依次是: 夏季(479.51 mg/m3)>秋季(257.37 mg/m3)>春季(241.86 mg/m3)>冬季(84.05 mg/m3), 平均丰度依次是: 夏季(156.36 ind./m3)>春季(91.57 ind./m3)>秋季(40.34 ind./m3)>冬季(21.82 ind./m3), 生物量和丰度均值都呈现出夏季、秋季到冬季依次减少, 春季增多的趋势, 不同的是秋季生物量均值高于春季, 而丰度均值低于春季。在夏、冬和春三季, 浮游动物的总生物量和总丰度的分布总体较为一致; 而在秋季, 浮游动物的总生物量和总丰度的分布几乎相反。百陶箭虫(Sagitta bedoti)和微剌哲水蚤(Canthocalanus pauper)是影响夏季总丰度分布最主要的种类; 链钟水母(Desmophyes annectens)是影响秋季总丰度分布最主要的种类; 驼背隆哲水蚤(Acrocalanus gibber)、亚强真哲水蚤(Eucalanus subcrassus)和百陶箭虫对冬季总丰度的分布起到了重要影响; 五角水母(Muggiaea atlantica)和微剌哲水蚤是春季占总丰度比例较高的种类。浮游动物数量各季不同分布模式的根本原因是台湾暖流和浙闽沿岸流水团的季节性变化所致。研究结果不仅对了解与评价区域海洋生态系统动态和生物多样性变化具有重要的理论意义, 而且还可以丰富我国近海水域浮游动物的生态特征与水团变化之间的关系。  相似文献   

16.
The qualitative composition and structure of the autumn zooplankton in the pelagic zone of Lake Sevan in years that were characterized by different abundancies of fish are described. In October 2013, upon the increase in whitefish abundance, the species richness of zooplankton increased insignificantly; the values of the trophic coefficient and the Shannon index, calculated by the number, increased; and the specific number of Rotifera and Cladocera decreased. At the same time, atypical changes were recorded in the development parameters of zooplankton invertebrates. They were expressed as an increase in the total biomass due to Cladocera, among which large Daphnia (Ctenodaphnia) magna Straus occupied the leading position. The possible reasons for the particular changes in zooplankton are discussed.  相似文献   

17.
三门湾浮游动物的季节变动及微型浮游动物摄食影响   总被引:6,自引:0,他引:6  
2002年8月、11月、2003年2月和5月,在三门湾进行了4个航次生物、化学和水文等专业综合调查。根据采集的浮游动物样品的分析鉴定及海上现场实验结果,对浮游动物的群落组成、生物量、丰度、多样性指数的分布和季节变动及其浮游动物对浮游植物的摄食影响进行研究。结果表明,三门湾浮游动物有67属,89种,16类浮游幼体,主要可划分为4个生态类群:以近岸低盐类群为主,其优势种为中华哲水蚤Calanus sinicus、真刺唇角水蚤Labidocera etwhaeta、捷氏歪水蚤Tortanus derjugini、太平洋纺锤水蚤Acartiapacifica、中华假磷虾Pseudeuphausia sinica和百陶箭虫Sagitta bedoti等。半咸水河口类群、暖水性外海类群和广布种相对较少。浮游动物生物量和丰度的平面分布趋势除了夏季有所差异外,其它季节基本一致。2月份和5月份,浮游动物生物量和丰度,从湾顶向湾口呈逐渐增加趋势;8月份,湾口区生物量最高,而丰度高值区出现在湾顶部;11月份,生物量和丰度的平面分布相对均匀。浮游动物种类多样性指数有明显的季节变化,其动态变化与浮游动物种数和丰度的变化一致。微型浮游动物对浮游植物存在摄食压力,且有季节变化,摄食率的变化在0.18.0.68d^-1,微型浮游动物的摄食率低于相同季节的浮游植物生长率。微型浮游动物对浮游植物摄食压力的变化范围为16.1%-49.1%d^-1,对初级生产力摄食压力的变化在58.3%-83.6%d^-1。11月份,微型浮游动物对浮游植物和初级生产力的摄食压力均出现最高值。  相似文献   

18.
Plankton dynamics at a station in lower Narragansett Bay, RIare compared for six summer and fall seasons, 1972–1977.In four of these years, initiation of the summer pulse of thectenophore Mnemiopsis leidyi was accompanied by a rapid declinein zooplankton abundance and a summer phytoplankton bloom. Terminationof the phytoplankton bloom coincided with depleted ctenophoreabundance and increased zooplankton biomass in two of the years.Yearly variations in the summer abundance of the diatom Skeletonemacostatum were positively related to the magnitude of the ctenophorepulse. The magnitude of ctenophore population was related tothe zooplankton biomass present at the start of the pulse. Theserelationships, the timing and magnitude of the plankton eventssuggest that M. leidyi regulated summer zooplankton and phytoplanktondynamics. Ctenophores may control phytoplankton blooms indirectlythrough their predation on herbivorous zooplankton and directlyby the nutrient excretion accompanying such grazing. This evidencethat a planktonic carnivore two trophic steps removed from thephytoplankton regulates the latter's dynamics in NarragansettBay is analogous to reported regulation of benthic algal (kelp)dynamics by the sea otter, lobster and various crabs throughtheir predation on herbivorous sea urchins. The factors responsiblefor the seasonal decrease in ctenophores remain unresolved;ctenophore predators on Mnemiopsis are absent in NarragansettBay. Infection by the vermiform larval anemone, Edwardsia lineata,grazing by the butterfish, Peprilus triacanthus, and changesin food availability, temperature and salinity likewise do notexplain this disappearance.  相似文献   

19.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

20.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号