首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

ISSR characterization of Chukrasia populations from the natural range revealed two distinct groups of populations consonant with morphological differentiation. Results suggest the current taxonomic classification of the genus should be reviewed.

Abstract

There are different views as to whether the genus Chukrasia (Meliaceae) consists of one species, C. tabularis, or two species C. tabularis and C. velutina. Despite a clear pattern of variation in many morphological characteristics such as leaves and bark, some authors regard the latter merely an ecotype of the former in seasonal forest. In the present study, we used ISSR markers to determine the genetic diversity and population structure among 23 Chukrasia subpopulations from across the natural range in Asia. Molecular analysis clearly differentiated two distinct groups of subpopulations, corresponding to the putative species, as well as well-defined subpopulations corresponding to geographic regions within the two groups. The molecular results are in concordance with morphological differentiation and corresponded to the two recognized taxa. The present study suggests that current taxonomic classification of the genus Chukrasia should be reviewed.  相似文献   

2.

Background

The impact of global climate change on plant distribution, speciation and extinction is of current concern. Examining species climatic preferences via bioclimatic niche modelling is a key tool to study this impact. There is an established link between bioclimatic niche models and phylogenetic diversification. A next step is to examine future distribution predictions from a phylogenetic perspective. We present such a study using Cyclamen (Myrsinaceae), a group which demonstrates morphological and phenological adaptations to its seasonal Mediterranean-type climate. How will the predicted climate change affect future distribution of this popular genus of garden plants?

Results

We demonstrate phylogenetic structure for some climatic characteristics, and show that most Cyclamen have distinct climatic niches, with the exception of several wide-ranging, geographically expansive, species. We reconstruct climate preferences for hypothetical ancestral Cyclamen. The ancestral Cyclamen lineage has a preference for the seasonal Mediterranean climate characteristic of dry summers and wet winters. Future bioclimatic niches, based on BIOCLIM and Maxent models, are examined with reference to a future climate scenario for the 2050s. Over the next 50 years we predict a northward shift in the area of climatic suitability, with many areas of current distribution becoming climatically unsuitable. The area of climatic suitability for every Cyclamen species is predicted to decrease. For many species, there may be no areas with a suitable climate regardless of dispersal ability, these species are considered to be at high risk of extinction. This risk is examined from a phylogenetic perspective.

Conclusion

Examining bioclimatic niches from a phylogenetic perspective permits novel interpretations of these models. In particular, reconstruction of ancestral niches can provide testable hypothesis about the historical development of lineages. In the future we can expect a northwards shift in climatic suitability for the genus Cyclamen. If this proves to be the case then dispersal is the best chance of survival, which seems highly unlikely for ant-dispersed Cyclamen. Human-assisted establishment of Cyclamen species well outside their native ranges offers hope and could provide the only means of dispersal to potentially suitable future environments. Even without human intervention the phylogenetic perspective demonstrates that major lineages could survive climate change even if many species are lost.  相似文献   

3.
4.

Background

Paracoccidioides brasiliensis (Eukaryota, Fungi, Ascomycota) is a thermodimorphic fungus, the etiological agent of paracoccidioidomycosis, the most important systemic mycoses in Latin America. Three isolates corresponding to distinct phylogenetic lineages of the Paracoccidioides species complex had their genomes sequenced. In this study the identification and characterization of class II transposable elements in the genomes of these fungi was carried out.

Results

A genomic survey for DNA transposons in the sequence assemblies of Paracoccidioides, a genus recently proposed to encompass species P. brasiliensis (harboring phylogenetic lineages S1, PS2, PS3) and P. lutzii (Pb01-like isolates), has been completed. Eight new Tc1/mariner families, referred to as Trem (Tr ansposable e lement m ariner), labeled A through H were identified. Elements from each family have 65-80% sequence similarity with other Tc1/mariner elements. They are flanked by 2-bp TA target site duplications and different termini. Encoded DDD-transposases, some of which have complete ORFs, indicated that they could be functionally active. The distribution of Trem elements varied between the genomic sequences characterized as belonging to P. brasiliensis (S1 and PS2) and P. lutzii. TremC and H elements would have been present in a hypothetical ancestor common to P. brasiliensis and P. lutzii, while TremA, B and F elements were either acquired by P. brasiliensis or lost by P. lutzii after speciation. Although TremD and TremE share about 70% similarity, they are specific to P. brasiliensis and P. lutzii, respectively. This suggests that these elements could either have been present in a hypothetical common ancestor and have evolved divergently after the split between P. brasiliensis and P. Lutzii, or have been independently acquired by horizontal transfer.

Conclusions

New families of Tc1/mariner DNA transposons in the genomic assemblies of the Paracoccidioides species complex are described. Families were distinguished based on significant BLAST identities between transposases and/or TIRs. The expansion of Trem in a putative ancestor common to the species P. brasiliensis and P. lutzii would have given origin to TremC and TremH, while other elements could have been acquired or lost after speciation had occurred. The results may contribute to our understanding of the organization and architecture of genomes in the genus Paracoccidioides.  相似文献   

5.

Background

The number of species within the Malagasy genus Lepilemur and their phylogenetic relationships is disputed and controversial. In order to establish their evolutionary relationships, a comparative cytogenetic and molecular study was performed. We sequenced the complete mitochondrial cytochrome b gene (1140 bp) from 68 individuals representing all eight sportive lemur species and most major populations, and compared the results with those obtained from cytogenetic studies derived from 99 specimens.

Results

Interspecific genetic variation, diagnostic characters and significantly supported phylogenetic relationships were obtained from the mitochondrial sequence data and are in agreement with cytogenetic information. The results confirm the distinctiveness of Lepilemur ankaranensis, L. dorsalis, L. edwardsi, L. leucopus, L. microdon, L. mustelinus, L. ruficaudatus and L. septentrionalis on species level. Additionally, within L. ruficaudatus large genetic differences were observed among different geographic populations. L. dorsalis from Sahamalaza Peninsula and from the Ambanja/Nosy Be region are paraphyletic, with the latter forming a sister group to L. ankaranensis.

Conclusion

Our results support the classification of the eight major sportive lemur taxa as independent species. Moreover, our data indicate further cryptic speciation events within L. ruficaudatus and L. dorsalis. Based on molecular data we propose to recognize the sportive lemur populations from north of the Tsiribihina River, south of the Betsiboka River, and from the Sahamalaza Peninsula, as distinct species.  相似文献   

6.

Background and aims

(i) compare the concentrations of total polyphenols (TP) and condensed tannins (CT), and CT profiles in different organs of mature trees and seedlings of eight true mangrove species in Hong Kong; (ii) examine the antioxidant activities of CT and (iii) relate the non-enzymatic antioxidative defence system with the vertical zonation pattern of mangrove species.

Methods

Mature trees and seedlings of eight species were collected from a Hong Kong mangrove swamp to determine TP and CT concentrations and the antioxidant activities of CT.

Results

According to TP concentrations, the true mangrove species could be broadly classified into three groups, (i) Lumnitzera racemosa and Aegiceras corniculatum > (ii) Heritiera littoralis, Excoecaria agallocha, Bruguiera gymnorrhiza and Kandelia obovata > (iii) Acanthus ilicifolius and Avicennia marina. The last two are pioneer species in the most foreshore location. They also had significantly lower antioxidant activities, CT concentrations and different CT profiles than the other six species in mid- and low-tides.

Conclusions

Classification of the eight true mangrove species into three groups based on polyphenols was similar to their vertical zonation from land to sea. The relationships between these antioxidants and zonation should be further verified by transplantation studies.  相似文献   

7.

Background

Cosmoscartini (Hemiptera: Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, currently containing over 310 phytophagous species (including some economically important pests of eucalyptus in China) in approximately 17 genera. However, very limited information of Cosmoscartini is available except for some scattered taxonomic studies. Even less is known about its phylogenetic relationship, especially among closely related genera or species. In this study, the detailed comparative genomic and phylogenetic analyses were performed on nine newly sequenced mitochondrial genomes (mitogenomes) of Cosmoscartini, with the purpose of exploring the taxonomic status of the previously defined genus Okiscarta and some closely related species within the genus Cosmoscarta.

Results

Mitogenomes of Cosmoscartini display similar genomic characters in terms of gene arrangement, nucleotide composition, codon usage and overlapping regions. However, there are also many differences in intergenic spacers, mismatches of tRNAs, and the control region. Additionally, the secondary structures of rRNAs within Cercopidae are inferred for the first time.Based on comparative genomic (especially for the substitution pattern of tRNA secondary structure) and phylogenetic analyses, the representative species of Okiscarta uchidae possesses similar structures with other Cosmoscarta species and is placed consistently in Cosmoscarta. Although Cosmoscarta bimacula is difficult to be distinguished from Cosmoscarta bispecularis by traditional morphological methods, evidence from mitogenomes highly support the relationships of (C. bimacula?+?Cosmoscarta rubroscutellata)?+?(C. bispecularis?+?Cosmoscarta sp.).

Conclusions

This study presents mitogenomes of nine Cosmoscartini species and represents the first detailed comparative genomic and phylogenetic analyses within Cercopidae. It is indicated that knowledge of mitogenomes can be effectively used to resolve phylogenetic relationships at low taxonomic levels. Sequencing more mitogenomes at various taxonomic levels will also improve our understanding of mitogenomic evolution and phylogeny in Cercopidae.
  相似文献   

8.
Proteomic analysis of the EhV-86 virion   总被引:1,自引:0,他引:1  

Background

Emiliania huxleyi virus 86 (EhV-86) is the type species of the genus Coccolithovirus within the family Phycodnaviridae. The fully sequenced 407,339 bp genome is predicted to encode 473 protein coding sequences (CDSs) and is the largest Phycodnaviridae sequenced to date. The majority of EhV-86 CDSs exhibit no similarity to proteins in the public databases.

Results

Proteomic analysis by 1-DE and then LC-MS/MS determined that the virion of EhV-86 is composed of at least 28 proteins, 23 of which are predicted to be membrane proteins. Besides the major capsid protein, putative function can be assigned to 4 other components of the virion: two lectin proteins, a thioredoxin and a serine/threonine protein kinase.

Conclusion

This study represents the first steps toward the identification of the protein components that make up the EhV-86 virion. Aside from the major capsid protein, whose function in the virion is well known and defined, the nature of the other proteins suggest roles involved with viral budding, caspase activation, signalling, anti-oxidation, virus adsorption and host range determination.  相似文献   

9.
The use of rrs (16S rRNA) gene is widely regarded as the “gold standard” for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4–7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0561-5) contains supplementary material, which is available to authorized users.  相似文献   

10.
Analysis of 142 genes resolves the rapid diversification of the rice genus   总被引:1,自引:0,他引:1  

Background

The completion of rice genome sequencing has made rice and its wild relatives an attractive system for biological studies. Despite great efforts, phylogenetic relationships among genome types and species in the rice genus have not been fully resolved. To take full advantage of rice genome resources for biological research and rice breeding, we will benefit from the availability of a robust phylogeny of the rice genus.

Results

Through screening rice genome sequences, we sampled and sequenced 142 single-copy genes to clarify the relationships among all diploid genome types of the rice genus. The analysis identified two short internal branches around which most previous phylogenetic inconsistency emerged. These represent two episodes of rapid speciation that occurred approximately 5 and 10 million years ago (Mya) and gave rise to almost the entire diversity of the genus. The known chromosomal distribution of the sampled genes allowed the documentation of whole-genome sorting of ancestral alleles during the rapid speciation, which was responsible primarily for extensive incongruence between gene phylogenies and persisting phylogenetic ambiguity in the genus. Random sample analysis showed that 120 genes with an average length of 874 bp were needed to resolve both short branches with 95% confidence.

Conclusion

Our phylogenomic analysis successfully resolved the phylogeny of rice genome types, which lays a solid foundation for comparative and functional genomic studies of rice and its relatives. This study also highlights that organismal genomes might be mosaics of conflicting genealogies because of rapid speciation and demonstrates the power of phylogenomics in the reconstruction of rapid diversification.  相似文献   

11.
Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0535-7) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Plant systematic studies have changed substantially in the last years, stimulated by new strategies for phylogenetic studies. In this regard, chemistry data has been a useful tool for understanding plant phylogenetic relationships.

Objective

Our aim was to apply metabolomic approaches, followed by multivariate statistical analysis and dereplication of Tabebuia sensu lato species, and compare our results with classifications based on traditional taxonomy and molecular phylogeny. We also evaluated the application of metabolomics as a chemotaxonomic identification tool, as well as to enlighten plant chemical evolution.

Methods

Metabolomic data was generated through a high-resolution mass spectrometry with electrospray ionization of 27 Tabebuia sensu lato specimens from different populations, consisting of 15 Handroanthus (from four species) and 12 Tabebuia sensu stricto (from three species). Chemometric tools, such as principal component analysis and metabolite heatmaps, were used to scrutinize the metabolic changes among species.

Results

Tabebuia and Handroanthus species presented different secondary metabolite storage capacity. The genus Tabebuia revealed higher levels of glycosylated iridoids esterified with a phenylpropanoid moiety, such as specioside, verminoside, and minecoside, while Handroanthus accumulated iridoids linked to a simple phenol, lignans, and verbascoside derivatives.

Conclusion

These results corroborate splitting the Tabebuia s.l., which was supported by profound changes in secondary metabolism, suggesting metabolomics as an excellent tool for understanding species evolution.
  相似文献   

13.
14.

Aims

In the present study, we analysed the diversity of indigenous arbuscular mycorrhizal fungi (AMF) colonising both the roots and rhizosphere soil of an annual herbaceous species, Bromus rubens, and a perennial herbaceous species, Brachypodium retusum, co-occurring in the same Mediterranean, semiarid degraded area. The intention was to study whether these two species promoted the diversity of AM fungi in their rhizospheres differently and to ascertain whether the AMF community harboured by an annual plant species differed from that harboured by a perennial species when both grew in the same place.

Methods

The AMF large subunit ribosomal RNA genes (LSU) were subjected to nested PCR, cloning, sequencing and phylogenetic analysis.

Results

Twenty AMF sequence types belonging to Glomus group A, Glomus group B and Diversispora were identified. The two plant species differed in the AMF community composition in their roots, B. rubens showing a higher diversity of AMF than B. retusum. However the composition of the AMF communities associated with the two rhizosphere soils was similar.

Conclusions

These results suggest that the management of these Mediterranean, semiarid degraded areas should include the promotion of annual herbaceous plant communities in order to maintain the sustainability and productivity of these ecosystems.  相似文献   

15.
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30–50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.  相似文献   

16.
17.

Background

Dermatophytes represent a group of keratinophilic fungi capable of invading the superficial layer of the skin, hair, and nails of humans and animals. There is a high prevalence of dermatomycosis in tropical regions, and military personnel are susceptible to this kind of infection due to the type of occupational activities.

Objective

This study was to investigate dermatophytosis in military, in addition to predisposing factors to such infections.

Methods

The direct examination of the 221 samples obtained was conducted by preparing fresh slides, clarified with KOH. The clinical materials were seeded in duplicate in SDA and in Mycosel agar medium. The identification of the etiologic agents was performed according to the Riddell technique.

Results

99/221 (44.8 %) of the dermatophyte infection agents distributed in the three taxonomic genera that cause Tinea were recovered. The Trichophyton genus was the most representative and T. rubrum species 33 (33.3 %), the most prevalent. The other species found were as follows: T. tonsurans 13 (13.1 %), T. verrucosum 11 (11.1 %), T. interdigitale 9 (9.1 %), and T. mentagrophytes 6 (6.1 %). Among the most affected anatomical sites were skin 83 (83.8 %) and nails 17 (17.2 %).

Conclusions

Dermatophyte infections are common disorders in tropical countries. These infections lead to a variety of clinical manifestations. This study reports the incidence of dermatophytosis in the military personnel in the Central-West Region of Brazil. The occupational activities of the military individuals, in addition to the hot and humid climate of the region, can predispose them to infection by these fungal entities.  相似文献   

18.
Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.  相似文献   

19.

Background

Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants.

Results

In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated.

Conclusions

Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.  相似文献   

20.

Background

A low genetic diversity in Francisella tularensis has been documented. Current DNA based genotyping methods for typing F. tularensis offer a limited and varying degree of subspecies, clade and strain level discrimination power. Whole genome sequencing is the most accurate and reliable method to identify, type and determine phylogenetic relationships among strains of a species. However, lower cost typing schemes are necessary in order to enable typing of hundreds or even thousands of isolates.

Results

We have generated a high-resolution phylogenetic tree from 40 Francisella isolates, including 13 F. tularensis subspecies holarctica (type B) strains, 26 F. tularensis subsp. tularensis (type A) strains and a single F. novicida strain. The tree was generated from global multi-strain single nucleotide polymorphism (SNP) data collected using a set of six Affymetrix GeneChip® resequencing arrays with the non-repetitive portion of LVS (type B) as the reference sequence complemented with unique sequences of SCHU S4 (type A). Global SNP based phylogenetic clustering was able to resolve all non-related strains. The phylogenetic tree was used to guide the selection of informative SNPs specific to major nodes in the tree for development of a genotyping assay for identification of F. tularensis subspecies and clades. We designed and validated an assay that uses these SNPs to accurately genotype 39 additional F. tularensis strains as type A (A1, A2, A1a or A1b) or type B (B1 or B2).

Conclusion

Whole-genome SNP based clustering was shown to accurately identify SNPs for differentiation of F. tularensis subspecies and clades, emphasizing the potential power and utility of this methodology for selecting SNPs for typing of F. tularensis to the strain level. Additionally, whole genome sequence based SNP information gained from a representative population of strains may be used to perform evolutionary or phylogenetic comparisons of strains, or selection of unique strains for whole-genome sequencing projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号