首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have engineered bacterial outer membrane vesicles (OMVs) with dramatically enhanced functionality by fusing several heterologous proteins to the vesicle-associated toxin ClyA of Escherichia coli. Similar to native unfused ClyA, chimeric ClyA fusion proteins were found localized in bacterial OMVs and retained activity of the fusion partners, demonstrating for the first time that ClyA can be used to co-localize fully functional heterologous proteins directly in bacterial OMVs. For instance, fusions of ClyA to the enzymes β-lactamase and organophosphorus hydrolase resulted in synthetic OMVs that were capable of hydrolyzing β-lactam antibiotics and paraoxon, respectively. Similarly, expression of an anti-digoxin single-chain Fv antibody fragment fused to the C terminus of ClyA resulted in designer “immuno-MVs” that could bind tightly and specifically to the antibody's cognate antigen. Finally, OMVs displaying green fluorescent protein fused to the C terminus of ClyA were highly fluorescent and, as a result of this new functionality, could be easily tracked during vesicle interaction with human epithelial cells. We expect that the relative plasticity exhibited by ClyA as a fusion partner should prove useful for: (i) further mechanistic studies to identify the vesiculation machinery that regulates OMV secretion and to map the intracellular routing of ClyA-containing OMVs during invasion of host cells; and (ii) biotechnology applications such as surface display of proteins and delivery of biologics.  相似文献   

2.
《Biotechnology advances》2017,35(5):565-574
Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles. The major advantages of adding heterologous proteins to the OMV are that the antigens retain their native conformation, the ability of targeting specific immune responses, and a single production process suffices for many vaccines. Several promising vaccine platform concepts have been engineered based on decorating OMVs with heterologous antigens. This review discusses these vaccine concepts and reviews design considerations as the antigen location, the adjuvant function, physiochemical properties, and the immune response.  相似文献   

3.
Outer membrane vesicles (OMVs) derived from pathogenic Gram-negative bacteria are an important vehicle for delivery of effector molecules to host cells, but the production of OMVs from Klebsiella pneumoniae, an opportunistic pathogen of both nosocomial and community-acquired infections, and their role in bacterial pathogenesis have not yet been determined. In the present study, we examined the production of OMVs from K. pneumoniae and determined the induction of the innate immune response against K. pneumoniae OMVs. Klebsiella pneumoniae ATCC 13883 produced and secreted OMVs during in vitro culture. Proteomic analysis revealed that 159 different proteins were associated with K. pneumoniae OMVs. Klebsiella pneumoniae OMVs did not inhibit cell growth or induce cell death. However, these vesicles induced expression of proinflammatory cytokine genes such as interleukin (IL)-1β and IL-8 in epithelial cells. An intratracheal challenge of K. pneumoniae OMVs in neutropenic mice resulted in severe lung pathology similar to K. pneumoniae infection. In conclusion, K. pneumoniae produces OMVs like other pathogenic Gram-negative bacteria and K. pneumoniae OMVs are a molecular complex that induces the innate immune response.  相似文献   

4.
细菌外膜囊泡是一种主要由革兰阴性菌在其生长过程中正常分泌的球状物质。这种球状小泡在细菌的生存和信息传递中起到了重要的作用。同时,由于这种球状小泡携带大量的细菌毒力相关蛋白,并且不具有复制的能力。因此,是一种良好的潜在疫苗候选抗原。目前,关于细菌外膜囊泡的构成成分、分泌机制、生物学作用等方面的研究已非常广泛。同时,利用细菌外膜囊泡作为主要抗原的疫苗产品也已面世。现就细菌外膜囊泡的结构研究以及细菌外膜囊泡在疫苗领域的研究作一概述,以期为进一步推动细菌外膜囊泡疫苗的研发提供更多的参考。  相似文献   

5.
  相似文献   

6.
Biological activities of outer membrane vesicles   总被引:24,自引:0,他引:24  
  相似文献   

7.
8.
Membrane vesicle (MV) release remains undefined, despite its conservation among replicating Gram-negative bacteria both in vitro and in vivo . Proteins identified in Salmonella MVs, derived from the envelope, control MV production via specific defined domains that promote outer membrane protein–peptidoglycan (OM–PG) and OM protein–inner membrane protein (OM–PG–IM) interactions within the envelope structure. Modulation of OM–PG and OM–PG–IM interactions along the cell body and at division septa, respectively, maintains membrane integrity while co-ordinating localized release of MVs with distinct size distribution and protein content. These data support a model of MV biogenesis, wherein bacterial growth and division invoke temporary, localized reductions in the density of OM–PG and OM–PG–IM associations within the envelope structure, thus releasing OM as MVs.  相似文献   

9.

Background

Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;).

Methodology/Principal Findings

We have identified a new bacterial surface structure, termed a “nanopod”, that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods.

Conclusions/Significance

Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms.  相似文献   

10.
Jin JS  Kwon SO  Moon DC  Gurung M  Lee JH  Kim SI  Lee JC 《PloS one》2011,6(2):e17027
Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients, but pathogenic mechanisms of this microorganism regarding the secretion and delivery of virulence factors to host cells have not been characterized. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs) that play a role in the delivery of virulence factors to host cells. A. baumannii has been shown to secrete OMVs when cultured in vitro, but the role of OMVs in A. baumannii pathogenesis is not well elucidated. In the present study, we evaluated the secretion and delivery of virulence factors of A. baumannii to host cells via the OMVs and assessed the cytotoxic activity of outer membrane protein A (AbOmpA) packaged in the OMVs. A. baumannii ATCC 19606(T) secreted OMVs during in vivo infection as well as in vitro cultures. Potential virulence factors, including AbOmpA and tissue-degrading enzymes, were associated with A. baumannii OMVs. A. baumannii OMVs interacted with lipid rafts in the plasma membranes and then delivered virulence factors to host cells. The OMVs from A. baumannii ATCC 19606(T) induced apoptosis of host cells, whereas this effect was not detected in the OMVs from the ΔompA mutant, thereby reflecting AbOmpA-dependent host cell death. The N-terminal region of AbOmpA(22-170) was responsible for host cell death. In conclusion, the OMV-mediated delivery of virulence factors to host cells may well contribute to pathogenesis during A. baumannii infection.  相似文献   

11.
12.
The three domains of bacterial outer membrane vesicle (OMV) engineering.
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

13.
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.  相似文献   

14.
15.
16.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

17.
Diffusion of small molecules across the outer membrane of gram-negative bacteria may occur through protein channels and through lipid bilayer domains. Among protein channels, many examples of trimeric porins, which produce water-filled diffusion channels, are known. Although the channels are nonspecific, the diffusion rates of solutes are often drastically affected by their gross physicochemical properties, such as size, charge, or lipophilicity, because the channel has a dimension not too different from that of the diffusing solutes. In the last few years, the structures of three such porins have been solved by X-ray crystallography. It is now known that a monomer unit traverses the membrane 16 times as -strands, and one of the external loop folds back into the channel to produce a narrow constriction. Most of the static properties of the channel, such as the pore size and the position of the amino acids that produce the constriction, can now be explained by the three-dimensional structure. Controversy, however, still surrounds the issue of whether there are dynamic modulation of the channel properties in response to pH, ionic strength, or membrane potential, and of whether such responses are physiological. More recently, two examples of monomeric porins have been identified. These porins allow a very slow diffusion of solutes, but the reason for this low permeability is still unclear. Finally, channels with specific binding sites facilitate the diffusion of specific classes of nutrients, often those compounds that are too large to penetrate rapidly through the porin channels. Lipid bilayers in the outer membrane were shown to be perhaps 50- to 100-fold less permeable to uncharged, lipophilic molecules in comparison with the bilayers made of the usual glycerophospholipids. This is caused by the presence of a lipopolysaccharide leaflet in the bilayer, and more specifically, by the presence of a larger number of fatty acids in each lipid molecule, and by the absence of unsaturated fatty acids in the lipopolysaccharide structure.  相似文献   

18.
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.  相似文献   

19.
Outer membrane vesicles (OMVs) are constitutively produced by all Gram-negative bacteria. OMVs form when buds from the outer membrane (OM) of cells encapsulate periplasmic material and pinch off from the OM to form spheroid particles approximately 10 to 300 nm in diameter. OMVs accomplish a diversity of functional roles yet the OMV's utility is ultimately determined by its unique composition. Inclusion into OMVs may impart a variety of benefits to the protein cargo, including: protection from proteolytic degradation, enhancement of long-distance delivery, specificity in host-cell targeting, modulation of the immune response, coordinated secretion with other bacterial effectors, and/or exposure to a unique function-promoting environment. Many enriched OMV-associated components are virulence factors, aiding in host cell destruction, immune system evasion, host cell invasion, or antibiotic resistance. Although the mechanistic details of how proteins become enriched as OMV cargo remain elusive, recent data on OM biogenesis and relationships between LPS structure and OMV-cargo inclusion rates shed light on potential models for OM organization and consequent OMV budding. In this review, mechanisms based on pre-existing OM microdomains are proposed to explain how cargo may experience differing levels of enrichment in OMVs and degrees of association with OMVs during extracellular export. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

20.
BACKGROUND: Helicobacter pylori extrudes protein- and lipopolysaccharide-enriched outer membrane vesicles from its cell surface which have been postulated to act to deliver virulence factors to the host. Lewis antigen expression by lipopolysaccharide of H. pylori cells has been implicated in a number of pathogenic roles. The aim of this study was to further characterize the expression of lipopolysaccharide on the surface of these outer membrane vesicles and, in particular, expression of Lewis antigens and their association with antibody production in the host. MATERIALS AND METHODS: H. pylori strains were examined for outer membrane vesicle production using transmission electron microscopy and Lewis antigen expression probed using immunoelectron microscopy. Sera from patients were analyzed for cross-reacting anti-Lewis antibodies and, subsequently, absorbed using outer membrane vesicle preparations to remove the cross-reacting antibodies. RESULTS: The formation of outer membrane vesicles by H. pylori was observed in both in vitro and in vivo samples. Furthermore, vesicles were produced following culture in either liquid or solid medium by all strains examined. Moreover, we observed the presence of Lewis epitopes on outer membrane vesicles using immunoelectron microscopy and immunoblotting. Circulating anti-Lewis antibodies were found in the sera of gastric cancer patients but not in the sera of H. pylori-negative control subjects. Absorption of patient sera with outer membrane vesicles decreased the levels of anti-Lewis autoantibodies. CONCLUSIONS: Our results demonstrate the ability of H. pylori to generate outer membrane vesicles bearing serologically recognizable Lewis antigens on lipopolysaccharide molecules which may contribute to the chronic immune stimulation of the host. The ability of these vesicles to absorb anti-Lewis autoantibodies indicates that they may, in part, play a role in putative autoimmune aspects of H. pylori pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号