首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many species of Western Australian Cyperaceae (sedges) are vital components of the indigenous flora but commonly display low seed set, poor seed quality and intractable seed dormancy. We report the effects of incubation temperature and in vitro growth media on whole seed germination compared with extracted zygotic embryo growth in Tetraria capillaris, T. octandra, Lepidosperma drummondii and L. tenue. No germination was observed from intact whole seeds of all test species regardless of the treatment evaluated. In contrast, excised zygotic embryos of all study species exhibited significant increases in growth when cultured at 15°C compared to embryos incubated at 25°C; however, optimal media for embryo growth were genera specific. Extracted embryos of T. capillaris and T. octandra exhibited maximum percentage growth (30 and 40%, respectively) at 15°C on ½ MS medium with no plant growth regulators required. In the case of L. drummondii and L. tenue 1 μM thidiazuron was a necessary addition to the ½ MS medium resulting in 40 and 77% growth of embryos (at 15°C), respectively. Incubation of extracted embryos at 25°C (regardless of medium treatment) resulted in <10% embryo growth for T. octandra and L. tenue, while the remaining two species (L. drummondii, T. capillaris) showed no embryo growth at 25°C on any medium treatment.  相似文献   

3.
Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.  相似文献   

4.
Jatropha curcas L. is one potential source of non-edible biofuel-producing energy crop. Its importance also lies in its medicinal properties. The species is primarily propagated through heterozygous seeds, and thus the seed oil content varies from 4 to 40%. Moreover, due to its perennial nature, seed setting requires 2 to 3 years time. The seed viability and rate of germination are low, and quality seed screening is another laborious task; thus, seed propagation alone cannot provide quality planting material for sustainable use. Somatic embryogenesis, a powerful tool of plant biotechnology for faster and quality plant production has been successfully applied to regenerate plants in Jatropha curcas for the first time. Embryogenic calli were obtained from leaf explants on MS basal medium supplemented with only 9.3 μM Kn. Induction of globular somatic embryos from 58% of the cultures was achieved on MS medium with different concentrations of 2.3–4.6 μM Kn and 0.5–4.9 μM IBA; 2.3 μM Kn and 1.0 μM IBA proved to be the most effective combination for somatic embryo induction in Jatropha curcas. Addition of 13.6 μM adenine sulphate stimulated the process of development of somatic embryos. Mature somatic embryos were converted to plantlets on half strength MS basal medium with 90% survival rate in the field condition. The whole process required 12–16 weeks of culture for completion of all steps of plant regeneration. This protocol of somatic embryogenesis in Jatropha curcas may be an ideal system for future transgenic research.  相似文献   

5.
Isoflavonoid biosynthesis and accumulation in developing soybean seeds   总被引:6,自引:0,他引:6  
Isoflavonoids are biologically active natural products that accumulate in soybean seeds during development. The amount of isoflavonoids present in soybean seed is variable, depending on genetic and environmental factors that are not fully understood. Experiments were conducted to determine whether isoflavonoids are synthesized within seed tissues during development, or made in other plant organs and transported to the seeds where they accumulate. An analysis of isoflavonoids by HPLC detected the compounds in all organs of soybean plant, but the amount of isoflavonoids present varied depending on the tissue and developmental stage. The greatest concentrations were found in mature seeds and leaves. The 2-hydroxyisoflavanone synthase genes IFS1 and IFS2 were studied to determine their pattern of expression in different tissues and developmental stages. The highest level of expression of IFS1 was observed in the root and seed coat, while IFS2 was most highly expressed in embryos and pods, and in elicitor-treated or pathogen-challenged tissues. Incorporation of radiolabel into isoflavonoids was observed when developing embryos and other plant organs were fed with [(14)C]phenylalanine. Embryos excised from developing soybean seeds also accumulated isoflavonoids from a synthetic medium. A maternal effect on seed isoflavonoid content was noted in reciprocal crosses between soybean cultivars that differ in seed isoflavonoids. From these results, we propose that developing soybean embryos have an ability to synthesize isoflavonoids de novo, but that transport from maternal tissues may in part contribute to the accumulation of these natural products in the seed.  相似文献   

6.
Dalbergia sissoo, a tropical tree with wind-dispersed pods, exhibits a highly positively skewed distribution of seeds per pod with predominantly only one of the four or five ovules maturing into seed. The abortion cannot be attributed to lack of pollen or resources. This study examines the hypothesis that the abortion is due to an intense rivalry among the developing sibs to gain dispersal advantage. Aqueous extract of the dominant embryos at the stigmatic end that generally develop to maturity significantly inhibited the uptake of labelled sucrose by the young developing (subject) embryos in an in vitro assay system. Extracts of tissues such as subordinate (peduncular embryos), unfertilized ovules and pod coat did not cause such inhibition. Aqueous diffusate of dominant embryos also inhibited the uptake of labelled sucrose by subject embryos. The chemical substance responsible for the inhibition appears to be heat-stable and non-proteinaceous. HPLC analysis indicated the presence of two retention time peaks, different from that of standard indole acetic acid, but with considerable overlap. We hypothesize that the compound could be an indole derivative. We propose that the stigmatic embryos have a head start due to earlier fertilization and produce a chemical that either directly (by metabolically killing) or indirectly (by preventing the uptake of assimilates) kills the proximally placed peduncular embryos.  相似文献   

7.
Four percent of the Australian flora is rare and endangered with over 100 taxa presumed extinct. Western Australia contains a large proportion of the endangered flora of Australia with 238 taxa in a critical state of conservation and 70 species presumed extinct. Kings Park and Botanic Garden in south-west Australia is responsible for developing specialized collections of rare and endangered indigenous flora. Macro-and micropropagation procedures are used including conventional cutting and seed propagation, grafting and in thein vitro programme whole seeds (asymbiotic and symbiotic germination), excised seed embryos, shoot apices and inflorescence sections. Wherever possible explants are collected from major provenances of the species and a wide cross section of a species population. Although many of the rare flora of Western Australia are now in theex situ collection maintained by Kings Park and Botanic Garden attempts are being made to develop slow growth storage forin vitro cultures and cryostorage. Trial recovery programmes have commenced with a number of species including the rare and endangered Purdie's donkey orchid (Diuris purdiei). Results of these recovery programmes will guide future efforts in conserving and recovering rare Australian species.  相似文献   

8.
Encapsulation technology is an exciting and rapidly growing area of biotechnological research. This has drawn tremendous attention in recent years because of its wide use in conservation and delivery of tissue cultured plants of commercial and economic importance. Production of synthetic seeds by encapsulating somatic embryos, shoot buds or any other meristmatic tissue helps in minimizing the cost of micropropagated plantlets for commercialization and final delivery. In most of fruit crops, seed propagation has not been successful because of heterozygosity of seeds, minute seed size, presence of reduced endosperm, low germination rate, and also some are having seedless varieties. Many species have desiccation-sensitive intermediate or recalcitrant seeds and can be stored for only a few weeks or months. Under these circumstances, increasing interest has been shown recently to use encapsulation technology for propagation and conservation. Many fruit plants are studied worldwide for breeding, genetic engineering, propagation, and pharmaceutical purposes. In this context, synthetic seeds would be more applicable in exchange of elite and axenic plant material between laboratories and extension centers due to small bead size and ease in handling. Due to these advantages, interest in using encapsulation technology has continuously been increasing in several fruit plant species. The purpose of this review is to focus upon current information on development of synthetic seeds in several fruit crops.  相似文献   

9.
Cloned mRNAs identify three programs of gene expression in cotton (Gossypium hirsutum L.) embryos that are associated with the maturation (reserve accumulation) stage, the postabscission stage, which is marked by expression of Late-embryogenesis-abundant (Lea) mRNAs, and germination (broadly defined as including all events through early postgerminative growth). In order to test if the regulation of these programs is the same in other dicotyledonous species, their expression was studied in normal and cultured maturation-stage, postabscission-stage, and mature embryo-stage embryos or seed of oilseed rape (Brassica napus L.), soybean (Glycine max [L.] Merr.), and tobacco (Nicotiana tabacum L.) using cotton and other cDNA probes. During postabscission, Lea mRNAs accumulated in all test species and were induced in earlier maturation-stage embryos by excision and culture on basal medium. Abscisic acid often enhanced this induction in the test species. Germinationspecific mRNAs were induced in cultured maturationstage and postabscission-stage embryos of all test species. These results indicate that the regulation of embryonic and germination programs is similar in all dicotyledons tested. Because excised embryos simultaneously induced postabscission and germination programs, the effects of exogenous growth regulators and other factors on such embryos probably reflect stress responses of germinating mature embryos rather than the identity of endogenous regulators of embryogenesis.Abbreviations ABA abscisic acid - GA3 gibberellic acid - DPA days postanthesis - Lea late embryogenesis abundant - MAT maturation stage - PA postabscission stage - ME mature embryo stage We thank J.J. Harada (Department of Botany, University of California, Davis, USA) and S.L. Berry-Lowe (Department of Biology, University of Colorado, Colorado Springs, USA) for plasmids. John E. Stacy is acknowledged for help with the Figures. This work was supported by grant GM29495 from the National Institute of Health to G.A.G and by individual research/travel grants from the Norwegian Agricultural Research Council (NLVF) to each of the authors.  相似文献   

10.
We have developed a reproducible system for efficient direct somatic embryogenesis from leaf and internodal explants of Paulownia elongata. The somatic embryos obtained were subsequently encapsulated as single embryos to produce synthetic seeds. Several plant growth regulators [6-benzylaminopurine, indole-3-acetic acid, -naphthaleneacetic acid, kinetin and thidiazuron (TDZ)] alone or in combination were tested for their capacity to induce somatic embryogenesis. The highest induction frequencies of somatic embryos were obtained on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 0.6% Phytagel, 500 mg l-1 casein hydrolysate and 10 mg l-1 TDZ (medium MS10). Somatic embryos were induced from leaf (69.8%) and internode (58.5%) explants on MS10 medium after 7 days. Subsequent withdrawal of TDZ from the induction medium resulted in the maturation and growth of the embryos into plantlets on MS basal media. The maturation frequency of somatic embryos from leaf and internodal explants was 50.8% and 45.8%, respectively. Subculturing of mature embryos led to their germination on the same medium with a germination frequency of 50.1% and 29.8% from leaf and internode explants, respectively. Somatic embryos obtained directly on leaf explants were used for encapsulation in liquid MS medium containing different concentrations of sodium alginate with a 30-min exposure to 50 mM CaCl2. A 3% sodium alginate concentration provided a uniform encapsulation of the embryos with survival and germination frequencies of 73.7% and 53.3%, respectively. Storage at 4°C for 30 days or 60 days significantly reduced the survival and complete germination frequencies of both encapsulated and non-encapsulated embryos relative to those of non-stored somatic embryos. However, the survival and germination rates of encapsulated embryos increased following storage at 4°C. After 30 days or 60 days of storage, the survival rates of encapsulated embryos were 67.8% and 53.5% and the germination frequencies were 43.2% and 32.4%, respectively. These systems could be useful for the rapid clonal propagation and dissemination of synthetic seed material of Paulownia elongata.Abbreviations BAP 6-Benzylaminopurine - IAA Indole-3-acetic acid - NAA -Naphthaleneacetic acid - TDZ ThidiazuronCommunicated by H. Lörz  相似文献   

11.
Summary We investigated seed morphology in 34 species of the genus Lysimachia and in 14 species and two subspecies of six additional genera (Anagallis, Ardisiandra, Asterolinon, Glaux, Pelletiera, Trientalis), which have been shown to be closely related to, or are placed within Lysimachia in previous molecular studies. We studied seed shape, seed coat structure, and seed coat surface patterns. Three major types of seed shape were identified: (1) sectoroid, (2) polyhedral, and (3) coarsely rugose with concave hilar area. In addition, seeds may be keeled or winged. The outer layer of the seed coat is either sponge-like and adhering only loosely to the inner seed coat or it is thin and tightly adhering to the underlying tissue. Seed surface patterns can be divided into six main types: (1) reticulate, (2) tuberculate, (3) vesiculose, (4) colliculate, (5) undulate, or (6) poroid-alveolate. Seed surface patterns are mostly congruent with molecular phylogenetic relationships. A reticulate surface pattern is diagnostic of, e.g. Lysimachia subgenera Palladia and Hawaiian Lysimachiopsis. Mapping seed characters onto a recent phylogenetic tree, reveals that they provide potentially synapomorphic character states for various subclades of Lysimachia. Salient examples include a rugose seed shape, which turns out to be synapomorphic for the clade comprising the genus Pelletiera plus Asterolinon linum-stellatum and a sponge-like outer seed coat layer, which characterizes a clade with Lysimachia vulgaris, L. thyrsiflora, and L. terrestris, with an analogue that apparently evolved in parallel in Trientalis europaea. We also discuss possible habitat factors that may have favored the independent evolution of particular seed types such as winged seeds in various lineages.  相似文献   

12.
Sexual polyembryony in almond   总被引:1,自引:0,他引:1  
Multiple embryos within the same seedcoat occur spontaneously in certain almond [P. dulcis (Mill.) D.A. Webb] cultivars including 'Nonpareil' and 'Mission'. Seedlings from the same polyembryonic seed are frequently viable, though one of the seedlings often shows weak growth and develops poorly. These dwarf seedlings have previously been reported as haploid. In this work, we have characterized several seedlings from 'Nonpareil' polyembryonic seed, including their germination and later growth. Isozyme and simple sequence repeat markers were used to analyze seedling genetic structure. In addition, individual mitotic karyotypes were determined following root-tip staining. The percentage of twin embryos showing aberrant growth was approximately 30%, with mortality rates of about 90%. The majority of these aberrant seedlings appear to be aneuploids. Most secondary embryos appear to be derived from the primary embryo following normal fertilization.  相似文献   

13.
Summary Somatic embryos of sweet potato have potential as synthetic seeds. The effects of abscisic acid (ABA) (0,0,0.1, 1.0, 10.0 and 50.0 μM) were examined to improve synchrony and proliferation of somatic embryos. Transferring embryos compared to those cultures transferred at day 0. The development of embryos in suspension culture supplemented with ABA was poor. However, when calli proliferation cultures were in gelled medium and pulsed with 0.1 μM ABA for 14 d, the number of somatic embryos increased. Proembryonic masses cultured in mannitol-containing medium (Y=−1.5 MPa) increased embryo development and synchrony of embryo development. Thus, in this work ABA and mannitol have been shown to improve both the total number and the synchrony of sweet potato somatic embryos.  相似文献   

14.
Soybean (Glycine max L. Merrill) somatic embryos have been useful for assaying seed-specific traits prior to plant recovery. Such traits could be assessed more accurately if somatic embryos more closely mimicked seed development. Amino acid supplements, carbon source, and abscisic acid and basal salt formulations were tested in an effort to modify existing soybean embryogenesis histodifferentiation/maturation media to further normalize the development of soybean somatic embryos. The resultant liquid medium, referred to as soybean histodifferentiation and maturation medium (SHaM), consists of FNL basal salts, 3% sucrose, 3% sorbitol, filter-sterilized 30 mM glutamine and 1 mM methionine. SHaM-derived somatic embryos are more similar to seed in terms of protein and fatty acid/lipid composition, and conversion ability, than somatic embryos obtained from traditional soybean histodifferentiation and maturation media.  相似文献   

15.
Summary Because plant cells cultured in vitro express genetic variability and since they can be regenerated into functional plants, procedures have been designed to use this system for the production of plants with new important agronomic characteristics, particularly for disease resistance. For barley, wheat, and potato somaclones have been found that were less susceptible to a toxin of Helminthosporium, fusaric acid, Fusarium coeruleum, F. sulphureum, or Phytophthora infestans, when screened in the first in-vitro-derived generation. Here the progeny of such somaclones is evaluated after natural and artificial infection, using greenhouse-grown or field material. The progenies of the same somaclones did not express detectable differences, which indicated that no heterozygous mutations occurred. Most lines and clones differed in their level of susceptibility to the pathogen compared to the level of the starting material, but these data were in no instance significant. It is discussed here whether this lack of significance is due to a lack of genetic differences or whether the test procedures are in adequate for detecting and securing the slight, probably quantitative, alterations.  相似文献   

16.
An improved protocol for efficient Agrobacterium-mediated transformation of grapevine (Vitis sp.) was developed through modification of cocultivation and subsequent washing procedures. It was determined that Agrobacterium-infected somatic embryos (SE) cocultivated on filter paper exhibited less browning and significantly higher transient GFP and GUS expression than those cultured on agar-solidified medium. Furthermore, such SE, when subjected to a prolonged washing period in liquid medium containing cefotaxime and carbenicillin, followed by another wash in similar medium with kanamycin added, exhibited significantly higher rates of stable transformation compared to previously-described procedures. Transgenic plant recovery was increased 3.5–6 Xs by careful excision of leafy cotyledons from SE that had been induced to germinate on MS medium containing 1 μM of BA. Southern blot analysis revealed the low copy number integration of transgenes in transgenic plants recovered using the improved protocol. These improved cocultivation and plant recovery procedures have been demonstrated to facilitate production of large populations of transgenic plants from V. vinifera ‘Merlot’, ‘Shiraz’ and ‘Thompson Seedless’ as well as Vitis hybrid ‘Seyval Blanc’.  相似文献   

17.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

18.
19.
A comparative study of protein synthesis has been carried out with embryos excised from dormant (D) and non-dormant (ND) caryopses of the wild oat. Although D embryos imbibed in water or ND embryos imbibed in abscisic acid do not germinate, they incorporate [14C]leucine into TCA-insoluble material for the first 48 h as readily as embryos that do germinate (ND embryos imbibed in water, or D embryos imbibed in gibberellic acid). Pulsechase experiments with [14]leucine show that in both D and ND embryos the proteins associated with the membranes undergo turnover. The rates of decay of incorporated radioactivity are similar in both dormant and germinating embryos up to 98 h following embryo excision. Fractionation of the membrane proteins in SDS-polyacrylamide gels indicates that the different polypeptides have different rates of turnover. It is concluded that membrane proteins in imbibed D embryos are in a state of constant turnover, and that this is a part of the replacement processes necessary to maintain the integrity of hydrated cells. The continuation of such synthetic events could account for long term survival of dormant Avena fatua in the imbibed state.Abbreviations CCRSE cytochrome relative stain equivalents - D dormant - ND nondormant - ABA abscisic acid - GA gibberellic acid GA3  相似文献   

20.
Summary We describe a tissue culture procedure for somatic embryogenesis and plantlet regeneration in cotton (Gossypium hirsutum L. cv. Coker 312). Callused explants or individual globular embryos were transferred to basal media to induce somatic embryogenesis. To determine characteristic early indicators of successful germination and conversion, we identified six types of embryos that developed on basal media. Two of the six embryo types, designated as tulip-shaped and trumpet-shaped, could undergo conversion in preliminary tests, whereas the others had little or no developmental potential. Several media treatments designed to enhance the maturation of globular somatic embryos failed to increase the fraction of embryos which matured to form recoverable types. In efforts to improve plantlet recovery, tulip-shaped embryos were used in limited trials to contrast the effects of chemical and physical desiccation treatments on germination and conversion. The selective use of tulip-shaped somatic embryos, coupled with partial desiccation, seems to have augmented plant recovery. Growth habit, flowering, seed set, and lint production of most of the regenerated plants were comparable to seed-derived plants grown under the same conditions. Partial research support was provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号