首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Here we present a brief account of current data on immobilization of oxygenic phototrophic microorganisms—cyanobacteria and eukaryotic microalgae—in natural and artificial experimental systems. We emphasize that immobilization e.g. in biofilms is a basic, widespread in nature strategy ensuring the survival of microorganisms. Accordingly, the artificially immobilized microalgal cells might be considered as a special group of biomimetic materials. Special attention is paid to the effect(s) of different immobilization on the physiology of microalgal cells and their stress tolerance as well as productivity of microalgal cultures. A comparison of the advantages and drawbacks of different immobilization techniques and cell carriers is presented. The review concludes with outlook on the possibilities of using of the immobilized phototrophic cells in biotechnology. Specific areas include (but not limited to) the biomass and metabolites production and harvesting, removal of heavy metals, biocapture of nutrients from wastewater and destroying of organic pollutants are explored.  相似文献   

2.
Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals and biofuels. Many sponges produce bioactive compounds with important potential applications as medical drugs. Recent developments in metagenomics, in the culturing of associated microorganisms from sponges and in the development of sponge cell-lines have the potential to solve the issue of supply, which is the main limitation for sponge exploitation. For the production of microalgal products at larger scales and the production of biofuels, major technological breakthroughs need to be realized to increase the product yield.  相似文献   

3.
4.
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   

5.
Microalgae offer potential for numerous commercial applications, among them the production of long-chain polyunsaturated fatty acids (LC-PUFAs). These valuable fatty acids are important for a variety of nutraceutical and pharmaceutical purposes, and the market for these products is continually growing. An appropriate ratio of LC-PUFA of the ω-3 and ω-6 groups is vital for "healthy" nutrition, and adequate dietary intake has strong health benefits in humans. Microalgae of diverse classes are primary natural producers of LC-PUFA. This mini-review presents an introductory overview of LC-PUFA-related health benefits in humans, describes LC-PUFA occurrence in diverse microalgal classes, depicts the major pathways of their biosynthesis in microalgae, and discusses the prospects for microalgal LC-PUFA production.  相似文献   

6.
Integrated processing of biotechnology products   总被引:9,自引:0,他引:9  
Integrated bioprocessing in which a potentially inhibitory product is continuously removed from the fermentation broth as it is produced, has important advantages in improving yield and conversion relative to conventional processes. This review discusses integrated processing for ethanol, butanol, organic acids, antibiotics, and other products. A variety of recovery operations can be used to isolate the product, as discussed. Use of some of the available options is compared.  相似文献   

7.
The recent and rapidly developing application of biotechnology which leads to the discovery of new therapeutic substances has raised a new set of safety issues for consideration by industry and regulatory bodies. The experience which already exists in the assessment of the safety and quality of biological products can contribute significantly to the approaches which are evolving with this new range of products. Industry and regulatory bodies should both resist the temptation to introduce testing programmes and requirements without a sound scientific rationale. This paper reviews some of the issues which should be considered when embarking on the safety evaluation of products derived from biotechnology.  相似文献   

8.
An overview of the various aspects, promises and limitations of microalgal biotechnology is presented. The factors of importance in microalgal cultivation as well as the culture systems are briefly described. Microalgal biomasses can fulfil the nutritional requirements of aquatic larvae and organisms. The biochemical composition of algae can be improved by the manipulation of culture conditions. The nutritive value of the microalgal biomasses for human and animal consumption is also commented upon as well as some socio-economical aspects. Among the sources of required nutrients (N, P), wastewaters and manures can upgraded as culture media for microalgae the safety of which has to be evaluated. Harvesting of the biomass is one of the bottlenecks. The various techniques, physical, physico-chemical and biological are outlined and their feasibility and economic interest examined. Microalgal biomasses can be submitted to various technological transformations. Various processes are reviewed in the light of their effects on safety and nutritional value. The possible extraction of fine chemicals and the preparation of protein concentrates is also reported on. The various uses of microalgae lead to a possible competition, to be evaluated, between systems for the production of food, energy and chemicals. The review finally covers the application of genetic manipulation to microalgae.  相似文献   

9.
Biodiesel from microalgae   总被引:27,自引:0,他引:27  
Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Unfortunately, biodiesel from oil crops, waste cooking oil and animal fat cannot realistically satisfy even a small fraction of the existing demand for transport fuels. As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops. Approaches for making microalgal biodiesel economically competitive with petrodiesel are discussed.  相似文献   

10.
Biofuels from microalgae   总被引:5,自引:0,他引:5  
Microalgae are a diverse group of prokaryotic and eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. They can potentially be employed for the production of biofuels in an economically effective and environmentally sustainable manner. Microalgae have been investigated for the production of a number of different biofuels including biodiesel, bio-oil, bio-syngas, and bio-hydrogen. The production of these biofuels can be coupled with flue gas CO2 mitigation, wastewater treatment, and the production of high-value chemicals. Microalgal farming can also be carried out with seawater using marine microalgal species as the producers. Developments in microalgal cultivation and downstream processing (e.g., harvesting, drying, and thermochemical processing) are expected to further enhance the cost-effectiveness of the biofuel from microalgae strategy.  相似文献   

11.
12.
13.
Recent developments in the field of microalgal biotechnology, including CO2 biomitigation and the discovery of new species of microalgae that are tolerant to extremely high CO2 levels (40–100 vol%), have renewed interest in the physiological effects and mechanisms of high-CO2 tolerance in photoautotrophs. Photosynthetic apparatus state transitions that increase ATP generation, upregulation of H+-ATPases pumping protons out of the cell, rapid shutdown of CO2-concentrating mechanisms, and adjustment of membranes’ fatty acid composition are currently believed to be the key mechanisms governing cellular pH homeostasis and hence microalgae’s tolerance to high CO2 levels, which is especially characteristic of extremophile and symbiotic species. The mechanisms governing acclimation to high CO2 comprise the subject of this review and are discussed in view of the use of CO2 enrichment to increase the productivity of microalgal cultures, as well as the practice of carbon capture from flue gases.  相似文献   

14.
《Trends in biotechnology》1988,6(11):279-282
Opportunities for biotechnology do not depend solely upon the development of biological techniques and processes. Markets can be created in parallel with the emergence of technology. The importance of luminometry in diagnostics, for instance, is due as much to the production of realistically priced, reliable instrumentation as it is to the increased availability of luciferases. Similar parallel developments are now occurring in the use of stable-isotope-labeled biochemicals. In essence, advances in application of stable-isotope detection techniques, such as mass spectrometry, nuclear magnetic resonance and infra-red radiometry are creating a demand for stable-isotope-labeled biochemicals. The most likely sources of these compounds are microalgae.  相似文献   

15.
16.
.
  1. Download : Download high-res image (275KB)
  2. Download : Download full-size image
Highlights► Microalgal oils have clear potential to replace functions of major vegetable oils. ► A limited production surface is required to produce food commodities by microalgae. ► Major breakthroughs are required to enable cost effective production of microalgae. ► Life cycle analysis can provide direction for sustainable production of microalgae. ► Safety of food ingredients from microalgae should be confirmed.  相似文献   

17.
Peroxidase activity was detected in cell-free extractsof strains of three species of the marine microalgae,Porphyridium purpureum, Phaeodactylumtricornutum and Dunaliella tertiolecta. However, no bromo- or chloroperoxidase activity wasdetected in any, using the standard 2-chlorodimedoneassay. Only the extract from P. purpureumoxidized iodide and this peroxidase was partiallypurified via anion-exchange chromatography. KI ando-dianisidine assay of the fractions indicatedthat only one peroxidase was present. Characterization of the thermally labile enzymesuggested that it is a heme-containing peroxidase,with a molecular weight of approximately 36,000.  相似文献   

18.
Summary Microalgae are a highly diverse group of unicellular organisms comprising the eukaryotic protists and the prokaryotic cyanobacteria or blue-green algae. The microalgae have a unique environmental status; being virtually ubiquitous in euphotic aquatic niches, they can occupy extreme habitats ranging from tropical coral reefs to the polar regions, and they contribute to half of the globe’s photosynthetic activity. Furthermore, they form the basis of the food chain for more than 70% of the world’s biomass. Microalgae are a valuable environmental and biotechnological resource, and the aim of this review is to explore the use of in vitro technologies in the conservation and sustainable exploitation of this remarkable group of organisms. The first part of the review evaluates the importance of in vitro methods in the maintenance and conservation of microalgae and describes the central role of culture collections in applied algal research. The second part explores the application of microalgal in vitro technologies, particularly in the context of the aquaculture and biotechnology industries. Emphasis is placed upon the exploitation of economically important algal products including aquaculture feed, biomass production for the health care sector, green fertilizers, pigments, vitamins, antioxidants, and antimicrobial agents. The contribution that microalgae can make to environmental research is also appraised; for example, they have an important role as indicator organisms in environmental impact assessments. Similarly, designated culture collection strains of microalgae are used for ecotoxicity testing. Throughout the review, emphasis is placed on the application of in vitro techniques for the continued advancement of microalgal research. The paper concludes by assessing future perspectives for the novel application of microalgae and their products.  相似文献   

19.
20.
Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号