首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ozone (O3) at ambient photochemical smog alert levels has been shown to cause alteration in pulmonary function and exercise response in humans, but there is a paucity of data on females. The initial purpose of the present investigation was to study the effects of O3 inhalation on pulmonary function and selected exercise respiratory metabolism and breathing pattern responses in young adult females. Six female subjects exercised continuously on a bicycle ergometer for 1 h on 10 occasions at one of three intensities, while exposed to 0.0, 0.20, 0.30, or 0.40 ppm O3. Forced expiratory volume and flow rates and residual volume (RV) were measured before and immediately following each protocol. During exercise, expired minute ventilation (VE), respiratory frequency (fR), tidal volume, O2 uptake (VO2), and heart rate (HR) were measured every 10 min. O3 dose-dependent decrements were observed for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and forced expiratory flow rate during the middle half of FVC, coupled with an increase in RV and altered exercise ventilatory pattern. There was also an increased VE but no significant O3 effect on VO2 or HR. Comparison of the females' responses to those of a group of young adult males (previously studied) at the same total O3 effective dose (i.e., expressed as the simple product of O3 concentration, VE, and exposure time) revealed significantly greater effects on FVC, FEV1.0, and fR for the females. With VE reduced for females as a function of exercise intensity at the same percent of maximum VO2, these differences were considerably attenuated, although not negated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pulmonary function hyperresponsiveness, defined as enhanced response on reexposure to O3, compared with initial O3 exposure, has been previously noted in consecutive day exposures to high ambient O3 concentrations (i.e., 0.32-0.42 ppm). Effects of consecutive-day exposure to lower O3 concentrations (0.20-0.25 ppm) have yielded equivocal results. To examine the occurrence of hyperresponsiveness at two levels of O3 exposure, 15 aerobically trained males completed seven 1-h exposures of continuous exercise at work rates eliciting a mean minute ventilation of 60 1/min. Three sets of consecutive-day exposures, involving day 1/day 2 exposures to 0.20/0.20 ppm O3, 0.35/0.20 ppm O3, and 0.35/0.35 ppm O3, were randomly delivered via an obligatory mouthpiece inhalation system. A filtered-air exposure was randomly placed 24 h before one of the three sets. Treatment effects were assessed by standard pulmonary function tests, exercise ventilatory pattern (i.e., respiratory frequency, f; and tidal volume, VT) changes and subjective symptom (SS) response. Initial O3 exposures to 0.35 and 0.20 ppm had a statistically significant effect, compared with filtered air, on all measurements. On reexposure to 0.35 ppm O3 24 h after an initial 0.35 ppm O3 exposure, significant hyperresponsiveness was demonstrated for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), f, VT, and total SS score. Exposure to 0.20 ppm O3 24 h after 0.35 ppm O3 exposure, however, resulted in significantly enhanced responses (compared with initial 0.20 ppm O3 exposure) only for FEV1, f, and VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous studies of 2 h of exposure to NO2 at high urban atmospheric levels (i.e., 0.50-1.0 ppm), utilizing light-to-moderate exercise for up to 1 h have failed to demonstrate significant pulmonary dysfunction in healthy humans. To test the hypothesis that heavy sustained exercise would elicit pulmonary dysfunction on exposure to 0.60 ppm NO2 and/or enhance the effects of exposure to 0.30 ppm O3, 40 aerobically trained young adults (20 males and 20 females) completed 1 h of continuous exercise at work rates eliciting a mean minute ventilation of 70 and 50 l/min for the males and females, respectively. Exposures to filtered air, 0.60 ppm NO2, 0.30 ppm O3, and 0.60 ppm NO2 plus 0.30 ppm O3 were randomly delivered via an obligatory mouthpiece inhalation system. Treatment effects were assessed by standard pulmonary function tests and exercise ventilatory and subjective symptoms response. Two-way analysis of variance with repeated measures and post hoc analyses revealed a statistically significant (P less than 0.05) effect of O3 on forced expiratory parameters, specific airway resistance, exercise ventilatory response, and reported subjective symptoms of respiratory discomfort. In contrast, no significant effect of NO2 was observed nor was there any significant interaction of NO2 and O3 in combination. There were no significant differences between male and female responses to gas mixture treatments. It was concluded that inhalation of 0.60 ppm NO2 for 1 h while engaged in heavy sustained exercise does not elicit effects evidenced by measurement techniques used in this study nor evoke additive effects beyond those induced by 0.30 ppm O3 in healthy young adults.  相似文献   

4.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

5.
The effects of 4 consecutive days of 1-h exposure to 0.35 ppm ozone (O3) on maximal O2 uptake (VO2max), performance time, pulmonary function, and subjective symptom responses were studied in eight aerobically trained males. Each subject was first exposed in random order to filtered air (FA) and 0.35 ppm O3 while exercising on a bicycle ergometer for 50 min at a work load eliciting minute ventilation of approximately 60 1/min. A rapidly incremented VO2max test to volitional fatigue was completed within 10 min following each of these exposures, as well as on day 4 of the consecutive daily exposures to O3. Initial exposure to O3 induced the occurrence of subjective symptoms, as well as significant pulmonary function impairment and decrements in maximal exercise performance time (from 253 to 211 s) and VO2max (from 3.85 to 3.62 l/min). Following the fourth consecutive day of exposure to O3, pulmonary function impairment was not significantly different from initial exposure to O3, although subjective symptom severity was significantly reduced. Exercise performance time (239 s) and VO2max (3.79 l/min) on the fourth consecutive daily exposure to O3 were not significantly different from FA values. These data indicate no significant adaptation to initial O3 exposure-induced pulmonary function impairment following four consecutive daily exposures to O3, although reduced subjective symptom severity and enhanced exercise performance time on day 4 suggest an habituation effect. Our results also suggest that O3 adaptation may be a more complex phenomena than identified previously.  相似文献   

6.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

7.
We tested the hypothesis that the lactate threshold (Tlac) during incremental exercise could be increased significantly during the first 3 wk of endurance training without any concomitant change in the ventilatory threshold (Tvent). Tvent is defined as O2 uptake (VO2) at which ventilatory equivalent for O2 [expired ventilation per VO2 (VE/VO2)] increased without a simultaneous increase in the ventilatory equivalent for CO2 (VE/VCO2). Weekly measurements of ventilatory gas exchange and blood lactate responses during incremental and steady-rate exercise were performed on six subjects (4 male; 2 female) who exercised 6 days/wk, 30 min/session at 70-80% of pretraining VO2max for 3 wk. Pretraining Tlac and Tvent were not significantly different. After 3 wk of training, significant increases (P less than 0.05) occurred for mean (+/- SE) VO2max (392 +/- 103 ml/min) and Tlac (482 +/- 135 ml/min). Tvent did not change during the 3 wk of training, despite significant (P less than 0.05) reductions in VE responses to both incremental and steady-rate exercise. Thus ventilatory adaptations to exercise during the first 3 wk of exercise training were not accompanied by a detectable alteration in the ventilatory "threshold" during a 1-min incremental exercise protocol. The mean absolute difference between pairs of Tlac and Tvent posttraining was 499 ml/min. Despite the significant training-induced dissociation between Tlac and Tvent a high correlation between the two parameters was obtained posttraining (r = 0.86, P less than 0.05). These results indicate a coincidental rather than causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have tested the response of 28 subjects to a three-stage ergometer test, with loads adjusted to 45, 60, and 75% of maximum aerobic power following ozone exposure. The subjects were exposed to one of 0.37, 0.50, or 0.75 ppm O3 for 2 h either at rest (R) or while exercising intermittently (IE) (15 min rest alternated with 15 min exercise at approximately 50 W. sufficient to increase VE by a factor of 2.5). Also, all subjects completed a mock exposure VE, respiratory frequency (fR), mixed expired PO2 and PCO2, and electrocardiogram were monitored continuously during the exercise test. Neither submaximal exercise oxygen consumption nor minute ventilation was significantly altered following any level of ozone exposure. The major response noted was an increase in respiratory frequency during exercise following ozone exposure. The increase in fR was closely correlated with the total dose of ozone (r = 0.98) and was accompanied by a decrease in tidal volume (r = 0.91) so that minute volume was unchanged. It is concluded that through its irritant properties, ozone modifies the normal ventilatory response to exercise, and that this effect is dose dependent.  相似文献   

9.
Ventilatory control in hypercapnia and exercise: optimization hypothesis   总被引:7,自引:0,他引:7  
A model of the respiratory control system incorporating both chemical and respiratory neuromechanical feedbacks is proposed to describe the steady-state ventilatory responses to CO2 inhalation and exercise. It is postulated that ventilatory output (VE) is set by the respiratory center to minimize a net operating cost representing the conflicting challenges of arterial chemical imbalance and respiratory-mechanical discomfort (intolerance of effort), given, respectively, by a quadratic function of arterial PCO2 and a logarithmic function of VE. In addition, the system is assumed to be mechanically limited at maximum VE (Vmax). The predicted responses in VE during moderate hypercapnia, exercise, and ventilatory loading closely mimic those normally observed, even though no separate signal unique to exercise is assumed. As a quantitative validation, the model yielded good fits to ventilatory response data obtained in eight healthy subjects during eucapnic and hypercapnic exercise; the predicted Vmax averaged approximately 77% of the maximum voluntary ventilation in all subjects. The results demonstrate the plausibility of the proposed optimization mechanism and suggest an important role for respiratory-mechanical factors in the control of VE.  相似文献   

10.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake (VO2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The VO2max increased significantly by 12% (P less than 0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to exhaustion at 80% of normoxic VO2max was 41% longer in HOX than in NOX (P less than 0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation (VE) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpl) increased initially by 3.5 mmol.l-1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, VE was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.  相似文献   

12.
To assess the effect of the normal respiratory resistive load on ventilation (VE) and respiratory motor output during exercise, we studied the effect of flow-proportional pressure assist (PA) (2.2 cmH2O.l-1.s) on various ventilatory parameters during progressive exercise to maximum in six healthy young men. We also measured dynamic lung compliance (Cdyn) and lung resistance (RL) and calculated the time course of respiratory muscle pressure (Pmus) during the breath in the assisted and unassisted states at a sustained exercise level corresponding to 70-80% of the subject's maximum O2 consumption. Unlike helium breathing, resistive PA had no effect on VE or any of its subdivisions partly as the result of an offsetting increase in RL (0.78 cmH2O.1-1.s) and partly to a reduction in Pmus. These results indicate that the normal resistive load does not constrain ventilation during heavy exercise. Furthermore, the increase in exercise ventilation observed with helium breathing, which is associated with much smaller degrees of resistive unloading (ca. -0.6 cmH2O.l-1.s), is likely the result of factors other than respiratory muscle unloading. The pattern of Pmus during exercise with and without unloading indicates that the use of P0.1 as an index of respiratory motor output under these conditions may result in misleading conclusions.  相似文献   

13.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

14.
It has been suggested that lung size accounts for observed gender differences in responsiveness to the same total inhaled dose of O3. To test the hypothesis that lung size is a determinant of magnitude of response within a gender, two groups of 14 healthy young adult females differing significantly in forced vital capacity [FVC; i.e., small-lung group mean = 3.74 liters (range 3.2-4.0) and large-lung group mean = 5.11 liters (range 4.5-6.2] were exposed for 1 h to filtered air (FA) and to 0.18 and 0.30 ppm O3. On each occasion, subjects exercised continuously on a cycle ergometer at a work rate that elicited a mean minute ventilation of approximately 47 l/min. For the small-lung group [mean total lung capacity (TLC) = 4.52 liters] exercise O2 uptake was 67% of maximal O2 uptake (VO2max), and that for the large-lung group (TLC 6.37 liters) was 61% of VO2max. Statistical analysis revealed significant decrements for both groups in FVC, forced expiratory volume in 1 s (FEV1.0), and forced expiratory flow rate in the middle half of FVC on exposure to 0.18 and 0.30 ppm O3. Exercise respiratory frequency increased, and tidal volume decreased significantly in both groups in response to 0.18 and 0.30 ppm O3 exposure. On exposure to 0.30 ppm O3, the number of individual subjective symptoms reported and their severity were significantly greater for both groups than those reported for the FA and 0.18 ppm O3 exposures. Both groups evidenced similar percent changes in pulmonary function and exercise ventilation response, and in subjective symptom response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A total of 257 healthy children (140 boys, 117 girls) varying in age from 5.7 to 18.5 years underwent graded exercise tests on a treadmill. Cardiorespiratory endurance capacity was assessed by determination of the ventilatory threshold, which was defined as the highest exercise intensity before a disproportionate increase occurred in pulmonary ventilation (VE) relative to oxygen uptake (VO2). The purpose of the present study was to investigate the relationship between the habitual level of physical activity (HLPA) and the cardiorespiratory endurance capacity in children. The HLPA was assessed by a standardized questionnaire. In boys and girls HLPA increased gradually with advancing age. For the group as a whole, the boys reached the highest values for HLPA. The most active boys reached the highest value for ventilatory threshold and the lowest value was found in the less active ones, except for the age span of 12-16 years. It is concluded that more active boys showed a higher cardiorespiratory endurance capacity, as assessed by the ventilatory threshold, compared to less active ones, except during puberty. It can be postulated that during puberty this effect may be overruled by the influence of other more dominant growth-related factors. In girls, because HLPA was rather low, there was no discriminative effect of HLPA on exercise performance, as would be expected.  相似文献   

16.
During ozone (O(3)) exposure, adult rats decrease their minute ventilation (VE). To determine whether such changes are also observed in immature animals, Sprague-Dawley rats, aged 2, 4, 6, 8, or 12 wk, were exposed to O(3) (2 ppm) in nose-only-exposure plethysmographs. Baseline VE normalized for body weight decreased with age from 2.1 +/- 0.1 ml. min(-1). g(-1) in 2-wk-old rats to 0. 72 +/- 0.03 ml. min(-1). g(-1) in 12-wk-old rats, consistent with the higher metabolic rates of younger animals. In adult (8- and 12-wk-old) rats, O(3) caused 40-50% decreases in VE that occurred primarily as the result of a decrease in tidal volume. In 6-wk-old rats, O(3)-induced changes in VE were significantly less, and in 2- and 4-wk-old rats, no significant changes in VE were observed during O(3) exposure. The increased baseline VE and the smaller decrements in VE induced by O(3) in the immature rats imply that their delivered dose of O(3) is much higher than in adult rats. To determine whether these differences in O(3) dose influence the extent of injury, we measured bronchoalveolar lavage protein concentrations. The magnitude of the changes in bronchoalveolar lavage induced by O(3) was significantly greater in 2- than in 8-wk-old rats (267 +/- 47 vs. 165 +/- 22%, respectively, P < 0.05). O(3) exposure also caused a significant increase in PGE(2) in 2-wk-old but not in adult rats. The results indicate that the ventilatory response to O(3) is absent in 2-wk-old rats and that lack of this response, in conjunction with a greater specific ventilation, leads to greater lung injury.  相似文献   

17.
Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease in VE on reoxygenation with either air (-11%) or 100% O2 (-20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in VE (-28.4 vs. -38.7%, air vs. 100% O2) and f (-13.8 vs. -22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase in VE (+116%) and f (+62.2%) during air reoxygenation and significant increase in VE (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.  相似文献   

18.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

19.
Although impaired respiratory muscle performance that persists up to 5 min after exercise is stopped has been demonstrated during exhaustive exercise in normal young men, it is not known whether impaired respiratory muscle function follows endurance exercise to exhaustion in highly trained athletes. To study the effects of exercise on sustained maximal voluntary ventilation immediately after exercise, eight elite cross-country skiers performed a 4-min maximal sustained ventilation (MSV) test before and immediately after exhaustive exercise. Subjects were encouraged to maintain maximal ventilation (VE) throughout the MSV test. To encourage greater effort, rapid visual feedback of VE was provided on a computer terminal along with a target VE based on their 12-s maximum voluntary ventilation (MVV). The subjects (7 males, 1 female) were 18.5 +/- 0.9 yr old (mean +/- SD) and exercised for 62.5 +/- 16.7 min at 77 +/- 5% of their maximum oxygen consumption during which average VE was 106.7 +/- 24.2 l/min BTPS. The mean MVV was 196.0 +/- 29.9 l/min or 107% of their age- and height-predicted MVV. Before exercise the MSV was 86% of the MVV or 176.7 +/- 30.5 l/min, whereas after exercise the MSV was 90% of the MVV or 180.3 +/- 28.9 l/min (P = NS). The total volume of gas expired during the 4-min MSV was 706.7 +/- 121.9 liters before and 721.2 +/- 115.5 liters after exercise (P = NS). In this group of athletes, exhaustive exercise produced no deleterious effects on the ability to perform a 4-min MSV test immediately after exercise.  相似文献   

20.
Seven male subjects performed progressive exercises with a light work load on an upper limb or bicycle ergometer in the sitting position. At any comparable work load above zero, arm exercise induced higher oxygen uptake, ventilation, heart rate, oxygen pulse, respiratory rate and tidal volume than leg exercise. At similar levels of VO2 above 0.45 1 X min-1, heart rate and ventilation were higher during arm exercise. A close linear relationship between carbon dioxide output and oxygen uptake was observed during both arm and leg exercises, the slope for arm work being steeper. The ventilatory equivalent for VCO2 (VE/VCO2) gradually decreased during both types of exercise. The ventilatory equivalent for VO2(VE/VO2) remained constant (arm) while it rose (leg) to a peak at 9.8 W and then gradually decreased. Ventilation in relation to tidal volume had a linear relationship with leg exercise, but became curvilinear with arm exercise after tidal volume exceeded 1100 ml. The observed differences in response between arm and leg exercises at a given work load appear to be influenced by differences in sympathetic outflow due to the greater level of static contraction of the relatively small muscle groups required by arm exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号