首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ran Liu  Ellen Cieraad  Yan Li 《Plant and Soil》2013,373(1-2):799-811

Background and aims

The response of plants and soil to rain pulses determines seasonal variations in the exchange of materials and energy at the ecosystem scale in arid and semi-arid regions. We assessed how the ecosystem carbon exchange (NEE) of desert halophyte communities of different plant functional-types responds to summer precipitation pulses in Tamarix and Haloxylon communities.

Methods

Plant water status, photosynthetic gas exchange, soil respiration and net ecosystem carbon exchange were measured to test the hypothesis that high physiological sensitivity may induce a greater changes in NEE resulting from the summer precipitation pulses in Haloxylon community.

Results

Plant water status and photosynthetic assimilation did not differ before and after summer precipitation pulses in either community. In contrast, soil respiration and NEE responded strongly to summer precipitation events in both communities. At the ecosystem level, precipitation pulses induced a pulse of CO2 release, rather than absorption. The NEE response to summer precipitation was less in the deep-rooted Tamarix community, compared to the shallow-rooted Haloxylon community, which was even converted into a carbon source after summer precipitation inputs. As a result, the effect of summer precipitation inputs on soil respiration was more important than the plant (carbon assimilation) response in determining the ecosystem response to episodic precipitation pulses.  相似文献   

2.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

3.
Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C4 bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO2 response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.  相似文献   

4.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

5.
An Ameriflux site was established in mid 1996 to study the exchange of CO2 in a native tallgrass prairie of north‐central Oklahoma, USA. Approximately the first 20 months of measurements (using eddy covariance) are described here. This prairie, dominated by warm season C4 grasses, is typical of the central Kansas/northern Oklahoma region. During the first three weeks of the measurement period (mid‐July–early August 1996), moisture‐stress conditions prevailed. For the remainder of the period (until March 1998), however, soil moisture was nonlimiting. Mid‐day net ecosystem CO2 exchange (NEE), under well‐watered conditions, reached a maximum magnitude of 1.4 mg CO2 m?2 s?1 (flux toward the surface is positive) during peak growth (mid‐July 1997), with green leaf area index of 2.8. In contrast, under moisture‐stress conditions in the same growth stage in 1996, mid‐day NEE was reduced to near‐zero. Average night NEE ranged from near‐zero, during winter dormancy, to ? 0.50 mg CO2 m?2 s?1, during peak growth. Most of the variance in average night NEE was explained by changes in soil temperature (0.1 m depth) and green leaf area. The daytime NEE measurements were examined in terms of a rectangular hyperbolic relationship with incident photosynthetically active radiation. The analysis showed that the quantum yield during peak growth was similar to those measured in other prairies and the y‐intercept, so obtained, can be potentially used as an estimate of night‐time CO2 emissions when eddy covariance data are unavailable. Daily integrated NEE reached its peak magnitude of 30.8 g CO2 m?2 d?1 (8.4 g C m?2 d?1) in mid‐July when the green LAI was the largest (about 2.8). In general, the seasonal trend of daily NEE (on relatively clear days) followed that of green LAI. Annually integrated carbon exchange, between prescribed burns in 1997 and 1998, was 268 g C m?2 y?1. After incorporating carbon loss during the prescribed burn , the net annual carbon exchange in this prairie was near‐zero in 1998.  相似文献   

6.
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site‐years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week‐to‐week change in NEE and among‐year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (Amax) than by change in apparent light‐use efficiency (α) or ecosystem respiration at 10 °C (R10) and (2) among‐year variation in the responses of NEE, Amax, and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with Amax than α or R10 for six of the eight rangelands. Week‐to‐week variation in NEE and physiological parameters correlated mainly with time‐lagged indices of precipitation and water‐related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (Amax, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.  相似文献   

7.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

8.

Background and aims

Nitrogen deposition and altered precipitation regime are likely to change plant growth, biomass allocation and community structure, which may influence susceptibility of ecosystem functions (i.e. ecosystem carbon exchange) to extreme climatic events, such as drought.

Methods

In a meadow steppe, we deployed a drought treatment on a long-term water and nitrogen addition experiment to investigate resource abundance changes induced variation in the sensitivity of ecosystem carbon exchange to extreme drought.

Results

Compared to the control plots, long-term water and nitrogen addition caused a strong increase in biomass, and a reduction in diversity and root/shoot ratio. Net ecosystem CO2 exchange (NEE) in water and nitrogen addition plots were more sensitive to drought stress than the control plots. The enhanced NEE drought sensitivity (SNEE) in nitrogen fertilization habitat is associated with changes in aboveground biomass and root/shoot ratio, rather than variation in species diversity, while SNEE in the unfertilized plots was controlled by root/shoot ratio. Compared to the water and nitrogen addition plots, the control plots had the highest percentage recovery of ecosystem carbon exchange (RNEE) during the rehydration period. RNEE is likely determined by aboveground biomass and level of damage in the photosynthetic organ.

Conclusion

These findings suggest that long-term changes in precipitation regimes and nitrogen deposition may significant alter the susceptibility of key ecosystem processes to drought stress.
  相似文献   

9.
The success of invasive aridland plants may depend on their utilization of precipitation not fully exploited by native species, which could lead to seasonally altered ecosystem carbon and water fluxes. We measured volumetric soil water across 25-cm profiles (??25cm) and springtime whole-plant water- and carbon-fluxes of the exotic Lehmann lovegrass (Eragrostis lehmanniana) and a native bunchgrass, bush muhly (Muhlenbergia porteri), following typical (55?mm in 2009) and El Ni?o-enhanced accumulations (154?mm in 2010) in a SE Arizona savanna. Across both years, ??25cm was higher under lovegrass plots, with similar evapotranspiration (ET) between lovegrass and bush muhly plots. However, in 2010 transpiration (T) was higher in bush muhly than lovegrass, implying higher soil evaporation in lovegrass plots maintained similar ET. Net ecosystem carbon dioxide exchange (NEE) was similar between lovegrass and bush muhly plots in 2009, but was more negative in bush muhly plots following El Ni?o, indicating greater CO2 assimilation. Ecosystem respiration (R eco) and gross ecosystem photosynthesis (GEP) were similar between lovegrass and bush muhly plots in 2009, but were higher in bush muhly plots in 2010. As a result, lovegrass plots reduced ecosystem water-use efficiency (WUEe?=?NEE/ET), while bush muhly WUEe remained constant between 2009 and 2010. Concurrent whole-plant WUE (WUEp?=?GEP/T) did not change in lovegrass plots, but increased in bush muhly plots between these years. We concluded that cool-season precipitation use is not a component of Lehmann lovegrass invasive success, but that the change in ET partitioning and attendant shifts in cool-season WUEe may increase interannual variation in ecosystem water- and carbon-exchange dynamics in the water-limited systems it dominates.  相似文献   

10.
Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.  相似文献   

11.

Background and Aims

Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.

Methods

Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.

Results

Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).

Conclusions

Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field.  相似文献   

12.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

13.
Grasslands worldwide have been invaded by woody species during the last200 years. Atmospheric CO2 enrichment may indirectly havefacilitatedinvasion by reducing soil water depletion by grasses. We used a two-stepcorrelative approach to test this hypothesis with the invasive and native shrubhoney mesquite (Prosopis glandulosa Torr. var.glandulosa). 1) Water content to 0.15 m depthwas measured in grassland exposed to a CO2 gradient from 200 to 550mol/mol to evaluate the prediction that CO2enrichment lessens soil water depletion by grasses. 2) Soil water content andemergence and survival of mesquite seedlings were measured in adjacentgrasslandplots from which grass roots were excluded to 0.15 m depth toreduce water depletion or that were irrigated to increase soil water levels.With these measurements, we tested the hypothesis that mesquite establishmentislimited by water.Excluding grass roots doubled emergence of mesquite and almost tripledthe fraction of emergent seedlings that survived for 12 weeks following thefirst of two plantings. Seedlings were taller, heavier, and had greater leafarea when grown without grass roots. Root exclusion did not measurably affectsoil water during the 3-week period of seedling emergence, but soilwatercontent over the 12 weeks that seedling survival was studied was higher inplotsfrom which grass roots were excluded and following an April than May planting.Survivorship of mesquite seedlings correlated positively with soil watercontent. Percentage survival of seedlings increased from 1.5% to15% and 28% at the soil water content measured in grasslandexposed to CO2 concentrations of 270 (preindustrial), 360 (current),and 550 mol/mol (future), respectively. We infer thatrecent and projected increases in atmospheric CO2 concentration maybe large enough to increase establishment of invading mesquite seedlings ingrasslands that are severely water-limited.  相似文献   

14.
Measurements were made of the concentration and stable oxygen isotopic ratio of carbon dioxide in air samples collected on a diurnal basis at two heights within a Pinus resinosa canopy. Large changes in CO2 concentration and isotopic composition were observed during diurnal time courses on all three symple dates. In addition, there was strong vertical stratification in the forest canopy, with higher CO2 concentrations and more negative 18O values observed closer to the soil surface. The observed daily increases in 18O values of forest CO2 were dependent on relative humidity consistent with the modelled predictions of isotopic fractionation during photosynthetic gas exchange. During photosynthetic gas exchange, a portion of the CO2 that enters the leaf and equilibrates with leaf water is not fixed and diffuses back out of the leaf with an altered oxygen isotopic ratio. The oxygen isotope ratio of CO2 diffusing out of a leaf depends primarily on the 18O content of leaf water which changes in response to relative humidity. In contrast, soil respiration caused a decline in the 18O values of forest CO2 at night, because CO2 released from the soil has equilibrated with soil water which has a lower 18O content than leaf water. The observed relationship between diurnal changes in CO2 concentration and oxygen isotopic composition in the forest environment were consistent with a gas mixing model that considered the relative magnitudes of CO2 fluxes associated with photosynthesis, respiration and turbulent exchange between the forest and the bulk atmosphere.  相似文献   

15.
Dukes  Jeffrey S. 《Plant Ecology》2002,160(2):225-234
The ongoing increase in atmospheric CO2 concentration ([CO2]) is likely to change the species composition of plant communities. To investigate whether growth of a highly invasive plant species, Centaurea solstitialis (yellow starthistle), was affected by elevated [CO2], and whether the success of this species would increase under CO2 enrichment, I grew the species in serpentine soil microcosms, both as a monoculture and as a component of a grassland community. Centaurea grown in monoculture responded strongly to [CO2] enrichment of 350 mol mol–1, increasing aboveground biomass production by 70%, inflorescence production by 74%, and midday photosynthesis by an average of 132%. When grown in competition with common serpentine grassland species, Centaurea responded to CO2 enrichment with similar but nonsignificant increases (+69% aboveground biomass, +71% inflorescence production), while total aboveground biomass of the polyculture increased by 28%. Centaurea's positive CO2 response in monoculture and parallel (but non-significant) response in polyculture provoke questions about possible consequences of increasing CO2 for more typical California grasslands, where the invader already causes major problems.  相似文献   

16.
Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4. Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short‐hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22‐week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco. As a result of drought‐induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100‐year greenhouse warming compensation point for CH4 (0.04). Drought‐induced diebacks of sawgrass (C3) led to the establishment of the invasive species torpedograss (C4) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water availability and the potential for positive feedbacks on radiative forcing.  相似文献   

17.

Background and Aims

Climate warming and increased atmospheric nitrogen (N) deposition both have the potential to increase plant productivity over the next century, yet they can also increase decomposition and respiration. Our aim was to examine the extent to which warming and N addition can, on balance, alter net ecosystem CO2 exchange (NEE) in a grass-dominated system.

Methods

We measured NEE responses to warming and N addition over two growing seasons in a temperate old field using steady-state flow-through chambers, which allowed for the integrated measurement of respiration and photoassimilation effects on net CO2 flux over diel periods. We also assessed the relationship between NEE and plant biomass responses to the warming and N treatments.

Results

In both years, our study system was a net source of carbon (C) during the snow-free season. N addition did not significantly affect diel NEE or dark respiration in either year, despite a doubling in aboveground plant biomass in response to N addition in the second year, and a corresponding increase in peak daily net CO2 photoassimilation in N addition plots. The warming treatment also had no significant effect on NEE, although the flow-through chambers required warming to be temporarily halted during NEE measurements.

Conclusions

Overall, our results both highlight the potential divergence of plant and soil responses to N addition and demonstrate the capacity for a grass-dominated system to function as a net source of C in consecutive years.  相似文献   

18.

Background and aim

Because the indigenous burrowing lagomorph plateau pika (Ochotona curzoniae) is considered to have negative ecological impacts on alpine meadow steppe grasslands of the Headwaters Region of the Yellow, Yangtze and Mekong Rivers we investigated its effects on ecosystem productivity and soil properties, and especially net ecosystem carbon flux.

Methods

We measured net ecosystem CO2 exchange (NEE) and its components gross ecosystem productivity (GEP) and ecosystem respiration (ER) at peak aboveground biomass by the chamber method with reference to plant and soil characteristics of areas of alpine meadow steppe with different densities of pika burrows.

Results

Higher burrow density decreased NEE, GEP and ER. Above-ground biomass, species number, plant cover and leaf area index decreased with increasing pika density. Higher burrow density was associated with lower soil moisture and higher soil temperature. Responses of NEE were related to changes of abiotic and biotic factors affecting its two components. NEE was positively related to soil moisture, soil ammonium nitrogen, plant cover, leaf area index and above-ground biomass but was negatively correlated with higher soil nitrate nitrogen.

Conclusion

Decrease of NEE by plateau pika may reduce the carbon sink balance of Qinghai-Tibet plateau grassland. Such effects may be influenced by grazing pressure from domestic livestock, population levels of natural predators, and climate change.  相似文献   

19.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

20.
Alpine ecosystems are extremely vulnerable to climate change. To address the potential variability of the responses of alpine ecosystems to climate change, we examined daily CO2 exchange in relation to major environmental variables. A dataset was obtained from an alpine meadow on the Qinghai‐Tibetan Plateau from eddy covariance measurements taken over 3 years (2002–2004). Path analysis showed that soil temperature at 5 cm depth (Ts5) had the greatest effect on daily variation in ecosystem CO2 exchange all year around, whereas photosynthetic photon flux density (PPFD) had a high direct effect on daily variation in CO2 flux during the growing season. The combined effects of temperature and light regimes on net ecosystem CO2 exchange (NEE) could be clearly categorized into three areas depending on the change in Ts5: (1) almost no NEE change irrespective of variations in light and temperature when Ts5 was below 0 °C; (2) an NEE increase (i.e. CO2 released from the ecosystem) with increasing Ts5, but little response to variation in light regime when 0 °C≤Ts5≤8 °C; and (3) an NEE decrease with increase in Ts5 and PPFD when Ts5 was approximately >8 °C. The highest daily net ecosystem CO2 uptake was observed under the conditions of daily mean Ts5 of about 15 °C and daily mean PPFD of about 50 mol m−2 day−1. The results suggested that temperature is the most critical determinant of CO2 exchange in this alpine meadow ecosystem and may play an important role in the ecosystem carbon budget under future global warming conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号