首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
单核苷酸多态性(single nucleotide polymorphism,SNP)是一类广泛分布于基因组中由单个碱基差异引起的DNA序列变异,SNP标记是第三代分子标记的代表。随着大规模测序技术的快速发展,大量的候选SNP位点被发现,候选SNP位点的发掘需要合适的分型技术。从等位基因分型机制、反应方式和检测等位基因方法等方面介绍当前海洋生物SNP分型技术的研究进展,以期为不同试验目的的研究选择合适的SNP分型技术提供参考。  相似文献   

2.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

3.
SNPs基因分型技术   总被引:2,自引:0,他引:2  
介绍了SNP的概念、特点,集中讨论了各种技术的原理及优缺点,并对目前SNP在遗传图的绘制、疾病防治、药物设计及法医学等方面的应用及研究进展进行了综述。  相似文献   

4.
随着分子遗传学的进展 ,疾病遗传学研究从简单的单基因疾病转向复杂的多基因疾病 (如骨质疏松症、糖尿病、心血管疾病、精神性紊乱、各种肿瘤等 )与药物基因组学的研究。与前者相比 ,多基因性状或遗传病的形成 ,受许多对微效加性基因作用。这些不同基因构成的遗传背景中 ,可能有易感性主基因 (majorgene)起着重要作用。它们同时还受环境因素的制约 ,彼此间相互作用错综复杂 ,所以任一基因的多态性对疾病发生仅起微弱的作用。鉴于此 ,需要在人类基因组中找到一种数目多、分布广泛且相对稳定的遗传标记。单核苷酸多态性 (singl…  相似文献   

5.
变性高效液相色谱技术在单核苷酸多态性研究中的应用   总被引:3,自引:0,他引:3  
人类基因组的单核苷酸多态性(SNPs)研究已成为后基因组时代最重要的内容和目的之一,随之而来的迫切任务是需要适合于自动化且高通量检测SNP的技术。变性高效液相色谱(DHPLC)是近几年发展起来的高效、快速筛检SNP的技术,因其检测SNP的高灵敏度、低成本以及全自动化操作等优点而备受关注。  相似文献   

6.
鸡Myostatin基因单核苷酸多态性的群体遗传学分析   总被引:20,自引:0,他引:20  
肌肉生长抑制素是控制骨骼肌生长发育的重要细胞因子,采用PCR-SSCP和测序的方法发现了5个位于Myostatin基因5′-和3′-调控区的单核苷酸多态性位点,对北京油鸡、白耳鸡、石歧杂、矮小黄鸡、小型黄鸡、惠阳胡须鸡、隐性白羽鸡、海兰、AA鸡等不同鸡种的该单核苷酸多态性分析结果表明:Myostatin基因的5′调控区引物P60/P61扩增片段多态性是由3个核苷酸的改变而产生的[分别是G→A(304位)、A→G(322位)、G→(344位)],引物P93/P94扩增片段的多态性是由G→A(167位)突变造成的,引物P117。P118PC扩增片段多态性是由T→C(177位)造成的。3′调控我引物P80/P81扩增片段多态性是由第7263位A突变为T造成的,引物P76/P77扩增片段多态性是由A→G(6935位)造成的。不同鸡种群体遗传学分析表明,5′-调控区引物60/P61扩增片段多态性片段多态性是由A→G(6935位)造成的。不同鸡种群体遗传学分析表明,5′-调控区引物P60/P61扩增片段多态性位点在北京油鸡的基因型频率分布与其他的品种有很大的差异,其BB型频率为0.700,AA基因型频率仅为0.033,而其他鸡种中以A基因优势;对于引物P93/P94,品种间的基因型频率差异极显著(P<0.01),北京油鸡和AA鸡的EE型频率鸡种中以A基因占优势;对于引物P93/P94,品种间的基因型频率差异极显著(P<0.01),北京油鸡和AA鸡的EE型频率低于其他品种,白耳鸡和海兰蛋鸡以EE型为主,其频率高于其他品种;3′-调控区引物P80/P81多态怀位点在9个鸡种中都是等位基因C占优势。引物P76/P77,总体上MM型的频率较低,杂合子MN型的频率较高。  相似文献   

7.
高通量SNP基因分型技术研究进展   总被引:2,自引:0,他引:2  
在后基因组时代,单核苷酸多态性研究已迅速成为了生物医学许多领域的焦点。发展可靠、敏感、经济、稳定、高通量的SNP基因分型技术已迫在眉睫。本文主要着重于高通量SNP基因分型技术的原理、利弊以及这些技术在这个领域过去几年中的进展。  相似文献   

8.
大肠癌遗传易感性与单核苷酸多态性(SNP)的关系是近年来研究的热点。研究发现COX2,MTHFR等代谢相关基因的某些SNP与大肠癌的发病风险相关,其中携带COX29850G-10335A单倍型的个体可显著增加患大肠癌的风险。MMP家族是调控大肠癌侵袭转移的重要基因,MMP7-181G等位型频率可显著增加大肠癌淋巴结转移风险。进一步寻找大肠癌特异性SNP,对筛选大肠癌高危人群,预估发病风险,具有重要意义。  相似文献   

9.
随着大量与人类疾病和药物治疗相关的单核苷酸多态性(Single-nucleotide polymorphism,SNP)的发现,出现了多种SNP分型检测的方法和技术。然而,大多数方法由于受限于检测灵敏度低或对检测设备和实验条件要求较高,不适宜于在一般实验条件下进行常规临床检测。通过建立一种基于连接酶-ELISA的SNP快速分型新方法,以非小细胞肺癌个体化治疗中,酪氨酸激酶抑制剂药物的生物标记基因—表皮生长因子受体基因(EGFR)为检测对象,对EGFR,c.2573T〉G(L858R),EGFR,c.2582T〉A(L861Q)和EGFR,c.2155 G〉T(G719C)3个SNP位点进行了突变检测。经过18~28个循环的PCR扩增,能够通过琼脂糖凝胶电泳和ELISA反应,根据电泳条带的有无和ELISA显色值清晰判断检测位点的基因型,并且能够从混合等位基因样本中检测出5%的突变型等位基因。结果表明,方法具有较高的特异性和灵敏度,适合于在常规实验条件下从不均一的样本中进行突变等位基因的检测。  相似文献   

10.
应用FP-TDI技术进行高通量单核苷酸多态分型   总被引:1,自引:2,他引:1  
FP-TDI (fluorescence polarization template-directed dye-terminator incorporation)是一种操作简单、实验投入少、适于高通量反应的单核苷酸多态等位基因分型技术.使用两种评价分型图像质量的数值指标,可以有效地对分型结果进行评价,使该技术得到了改进.在此基础上优化了实验条件,并应用该技术,对人类基因组3号染色体上随机选取的337个单核苷酸多态性位点进行了高通量分型,反应的一次成功率达到59.94%.  相似文献   

11.
Single nucleotide polymorphisms are the most common polymorphism in plant and animal genomes and, as such, are the logical choice for marker-assisted selection. However, many plants are also polyploid, and marker-assisted selection can be complicated by the presence of highly similar, but non-allelic, homoeologous sequences. Despite this, there is practical and academic demand for high-throughput genotyping in several polyploid crop species, such as allohexaploid wheat. In this paper, we present such a system, which utilizes public single nucleotide polymorphisms previously identified in both agronomically important genes and in randomly selected, mapped, expressed sequence tags developed by the wheat community. To achieve relatively high levels of multiplexing, we used non-amplified genomic DNA and padlock probe pairs, together with high annealing temperatures, to differentiate between similar sequences in the wheat genome. Our results suggest that padlock probes are capable of discriminating between homoeologous sequences and hence can be used to efficiently genotype wheat varieties.  相似文献   

12.
We developed the SNPlex Genotyping System to address the need for accurate genotyping data, high sample throughput, study design flexibility, and cost efficiency. The system uses oligonucleotide ligation/polymerase chain reaction and capillary electrophoresis to analyze bi-allelic single nucleotide polymorphism genotypes. It is well suited for single nucleotide polymorphism genotyping efforts in which throughput and cost efficiency are essential. The SNPlex Genotyping System offers a high degree of flexibility and scalability, allowing the selection of custom-defined sets of SNPs for medium- to high-throughput genotyping projects. It is therefore suitable for a broad range of study designs. In this article we describe the principle and applications of the SNPlex Genotyping System, as well as a set of single nucleotide polymorphism selection tools and validated assay resources that accelerate the assay design process. We developed the control pool, an oligonucleotide ligation probe set for training and quality-control purposes, which interrogates 48 SNPs simultaneously. We present performance data from this control pool obtained by testing genomic DNA samples from 44 individuals. in addition, we present data from a study that analyzed 521 SNPs in 92 individuals. Combined, both studies show the SNPlex Genotyping system to have a 99.32% overall call rate, 99.95% precision, and 99.84% concordance with genotypes analyzed by TaqMan probe-based assays. The SNPlex Genotyping System is an efficient and reliable tool for a broad range of genotyping applications, supported by applications for study design, data analysis, and data management.  相似文献   

13.
High throughput genotyping technologies.   总被引:4,自引:0,他引:4  
A comprehensive genetic map containing several hundred microsatellite markers resulted from a large microsatellite mapping project. This was the first real study that introduced high throughput methods to the genetic community. This map and the concurrent technological advances, which will briefly be reviewed, led to further numerous mapping investigations of simple and complex diseases. The annotated draft sequence of approximately three billion base pairs (bp) of the human genome has been completed much sooner than many imagined, due to considerable technological advancements and the international enterprise that resulted. This was a major development for the genetics community, but is only the precursor to the next phase of studying and understanding the variation within the human genome. The awareness of the differences may help us understand the effects on the genetics of the variation between individuals and disease. It is these variations at the nucleotide level that determine the physiological differences, or phenotypes of each individual, including all biological functions at the cellular and body level. Single nucleotide polymorphisms (SNPs) will provide the next high density map, and be the genetic tool to study these genetic variations. There are many sources of SNPs and exhaustive numbers of methods of SNP detection to be considered. The focus in this paper will be on the merits of selected, varied SNP typing methodologies that are emerging to genotype many individuals with the required huge number of SNPs to make the study of complex diseases and pharmacogenomics a practical and economically viable option.  相似文献   

14.
Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.  相似文献   

15.
We have used linkage disequilibrium (LD) to identify single nucleotide polymorphisms (SNPs) on the Illumina Equine SNP50 BeadChip, which may be incorrectly positioned on the genome map. A total of 1201 Thoroughbred horses were genotyped using the Illumina Equine SNP50 BeadChip. LD was evaluated in a pairwise fashion between all autosomal SNPs, both within and across chromosomes. Filters were then applied to the data, firstly to identify SNPs that may have been mapped to the wrong chromosome and secondly to identify SNPs that may have been incorrectly positioned within chromosomes. We identified a single SNP on ECA28, which showed low LD with neighbouring SNPs but considerable LD with a group of SNPs on ECA10. Furthermore, a cluster of SNPs on ECA5 showed unusually low LD with surrounding SNPs. A total of 39 SNPs met the criteria for unusual within-chromosome LD. The results of this study indicate that some SNPs may be misplaced. This finding is significant, as misplaced SNPs may lead to difficulties in the application of genomic methods, such as homozygosity mapping, for which SNP order is important.  相似文献   

16.
The objective of this study was to quantify the extent of linkage disequilibrium (LD) on bovine chromosomes 19 and 29 and to study the pattern of selection signatures in beef and dairy breeds (Angus and Holstein) of Bos taurus. The extent of LD was estimated for 370 and 186 single nucleotide polymorphism markers on BTA19 and 29 respectively using the square of the correlation coefficient (r(2)) among alleles at pairs of loci. A comparison of the extent of LD found that the decline of LD followed a similar pattern in both breeds. We observed long-range LD and found that LD dissipates to background levels at a locus separation of about 20 Mb on both chromosomes. Along each chromosome, patterns of LD were variable in both breeds. We find that a minimum of 30 000 informative and evenly spaced markers would be required for whole-genome association studies in cattle. In addition, we have identified chromosomal regions that show some evidence of selection for economically important traits in Angus and Holstein cattle. The results of this study are of importance for the design and application of association studies.  相似文献   

17.
This report describes single-nucleotide polymorphisms (SNPs) in the sheep major histocompatibility complex (MHC) class II and class III regions and provides insights into the internal structure of this important genomic complex. MHC haplotypes were deduced from sheep family trios based on genotypes from 20 novel SNPs representative of the class II region and 10 previously described SNPs spanning the class III region. All 30 SNPs exhibited Hardy-Weinberg proportions in the sheep population studied. Recombination within an extended sire haplotype was observed within the class II region for 4 of 20 sheep chromosomes, thereby supporting the presence of separated IIa and IIb subregions similar to those present in cattle. SNP heterozygosity varied across the class II and III regions. One segment of the class IIa subregion manifested very low heterozygosity for several SNPs spanning approximately 120 Kbp. This feature corresponds to a subregion within the human MHC class II region previously described as a 'SNP desert' because of its paucity of SNPs. Linkage disequilibrium (LD) was reduced at the junction separating the putative class IIb and IIa subregions and also between the class IIa and the class III subregions. The latter observation is consistent with either an unmapped physical separation at this location or more likely a boundary characterized by more frequent recombination between two conserved subregions, each manifesting high within-block LD. These results identify internal blocks of loci in the sheep MHC, within which recombination is relatively rare.  相似文献   

18.
A previous genome‐wide search with a moderate density 10K marker set identified many marker associations with twinning rate, either through single‐marker analysis or combined linkage‐linkage disequilibrium (LLD; haplotype) analysis. The objective of the current study was to validate putative marker associations using an independent set of phenotypic data. Holstein bulls (n = 921) from 100 paternal half‐sib families were genotyped. Twinning rate predicted transmitting abilities were calculated using calving records from 1994 to 1998 (Data I) and 1999 to 2006 (Data II), and the underlying liability scores from threshold model analysis were used as the trait in marker association analyses. The previous analysis used 201 bulls with daughter records in Data I. In the current analysis, this was increased to 434, providing a revised estimate of effect and significance. Bulls with daughter records in Data II totaled 851, and analysis of this data provided the validation of results from analysis of Data I. Single nucleotide polymorphisms (SNPs) were selected to validate previously significant single‐marker associations and LLD results. Bulls were genotyped for a total of 306 markers. Nine of 13 LLD regions located on chromosomes 1, 2, 3, 6, 9, 22, 23(2) and 26 were validated, showing significant results for both Data I and II. Association analysis revealed 55 of 174 markers validated, equating to a single‐marker validation rate of 31%. Stepwise backward elimination and cross‐validation analyses identified 18 SNPs for use in a final reduced marker panel explaining 34% of the genetic variation, and to allow prediction of genetic merit for twinning rate.  相似文献   

19.
Maritime pine provides essential ecosystem services in the south‐western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three‐generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene‐based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号