首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Life-cycle inventory and cost-analysis tools applied to milk packaging offer guidelines for achieving better environmental design and management of these systems. Life-cycle solid waste, energy, and costs were analyzed for seven systems including single-use and refillable glass bottles, single-use and refillable high-density polyethylene (HDPE) bottles, paperboard gable-top cartons, linear low-density polyethylene (LLDPE) flexible pouches, and polycarbonate refillable bottles on a basis of 1,000 gal of milk delivered. In addition, performance requirements were also investigated that highlighted potential barriers and trade-offs for environmentally preferable alternatives. Sensitivity analyses, indicated that material production energy, postconsumer solid waste, and empty container costs were key parameters for predicting life-cycle burdens and costs. Recent trends in recycling rates, tipping fees, and recycled materials market value had minimal effect on the results. Inventory model results for life-cycle solid waste and energy indicated the same rank order as results from previously published life-cycle inventory studies of container systems.
Refillable HDPE and polycarbonate, and the flexible pouch were identified as the most environmentally preferable with respect to life-cycle energy and solid waste. The greater market penetration of these containers may be limited by performance issues such as empty container storage, handling requirements, and deposit fees for refillables, and resealability and puncture resistance for the pouch.  相似文献   

2.
One of the ways in which risk assessment can inform life-cycle analysis (LCA) is by providing a mechanism to translate midpoint categories into common endpoints. Although this analytical step is complex and often highly uncertain, it can allow for prioritization among disparate midpoints and subsequent analytical refinements focused on the endpoints that dominate policy decisions. In this article, we present an approach to address three widely differing impact categories—particulate matter air pollution, greenhouse gas emissions, and personal income. We use the case of increased residential insulation as a measure to reduce energy consumption, which implies economic and public health tradeoffs across all three categories. We apply previously developed models that combined input-output LCA and risk assessment to address public health impacts from particulate matter, and extend the framework to address greenhouse gases and the public health consequences of changes in income. For a hypothetical loan program applied to both new and existing single-family homes, we find a payback period of approximately one year for the particulate matter and greenhouse gas–related midpoints and endpoints, with the structure of the loan implying that no economic payback is required. Our central estimates for avoided disability adjusted life years (DALYs) for a 50-year period are approximately 200,000 for particulate matter, 900,000 for greenhouse gases, and 300,000 for income changes, although values are highly dependent on discount rates and other model assumptions. We conclude that all three impact categories are potentially significant in this case, indicating that analytical refinements should be considered for all three impact categories to reduce model uncertainties. Our study demonstrates how LCA and risk assessment can work together in a framework that includes multiple impact categories, aiding in the evaluation of the net impacts of an energy policy change on society.  相似文献   

3.
Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.  相似文献   

4.
We have investigated the global warming potential (GWP) of CFC-I I, CFC-12, and their replacements, HCFC-I23 and HFC-I34a, based on a life-cycle methodology for refrigeration. We have extended the definition of the total equivalent warming impact (TEWI), which considers the GWP (direct) and GWP (indirect) warming potential of each chemical compound, by adding the GWP (chemical production), GWP (recycling), and GWP (atmospheric breakdown products) for each chemical. We call the new index "life-cycle warming impact" (LCWI).We find that the GWP (chemical production) contributes by no more than 1% to LCWI, and that the GWP (indirect) is highly dependent on refrigerator eficiency and the fuel mix of the electricity source used to operate the appliance. The GWP (atmospheric breakdown products) may also have a significant impact on LCWI.  相似文献   

5.
The seasonal and hourly variation of electricity grid emissions and building operational energy use are generally not accounted for in carbon footprint analyses of buildings. This work presents a technique for and results of such an analysis and quantifies the errors that can be encountered when these variations are not appropriately addressed. The study consists of an hour‐by‐hour analysis of the energy used by four different variations of a five‐story condominium building, with a gross floor area of approximately 9,290 square meters (m2), planned for construction in Markham, Ontario, Canada. The results of the case studied indicate that failure to account for variation can, for example, cause a 4% error in the carbon footprint of a building where ground source heat pumps are used and a 6% and 8% error in accounting for the carbon savings of wind and photovoltaic systems, respectively. After the building envelope was enhanced and sources of alternative energy were incorporated, the embodied greenhouse gas (GHG) emissions were more than 50% of the building's operational emissions. This work illustrates the importance of short‐time‐scale GHG analysis for buildings.  相似文献   

6.
Short-rotation woody crops (SRWC) along with other woody biomass feedstocks will play a significant role in a more secure and sustainable energy future for the United States and around the world. In temperate regions, shrub willows are being developed as a SRWC because of their potential for high biomass production in short time periods, ease of vegetative propagation, broad genetic base, and ability to resprout after multiple harvests. Understanding and working with willow's biology is important for the agricultural and economic success of the system.

The energy, environmental, and economic performance of willow biomass production and conversion to electricity is evaluated using life cycle modeling methods. The net energy ratio (electricity generated/life cycle fossil fuel consumed) for willow ranges from 10 to 13 for direct firing and gasification processes. Reductions of 70 to 98 percent (compared to U.S. grid generated electricity) in greenhouse gas emissions as well as NOx, SO2, and particulate emissions are achieved.

Despite willow's multiple environmental and rural development benefits, its high cost of production has limited deployment. Costs will be lowered by significant improvements in yields and production efficiency and by valuing the system's environmental and rural development benefits. Policies like the Conservation Reserve Program (CRP), federal biomass tax credits and renewable portfolio standards will make willow cost competitive in the near term.

The avoided air pollution from the substitution of willow for conventional fossil fuel generated electricity has an estimated damage cost of $0.02 to $0.06 kWh?1. The land intensity of about 4.9 × 10?5 ha-yr/kWh is greater than other renewable energy sources. This may be considered the most significant limitation of willow, but unlike other biomass crops such as corn it can be cultivated on the millions of hectares of marginal agricultural lands, improving site conditions, soil quality and landscape diversity. A clear advantage of willow biomass compared to other renewables is that it is a stock resource whereas wind and PV are intermittent. With only 6 percent of the current U.S. energy consumption met by renewable sources the accelerated development of willow biomass and other renewable energy sources is critical to address concerns of energy security and environmental impacts associated with fossil fuels.  相似文献   


7.
China's remarkable economic growth in the last 3 decades has brought about big improvements in quality of life while simultaneously contributing to serious environmental problems. The aim of all economic activities is, ultimately, to provide the population with products and services. Analyzing environmental impacts of consumption can be valuable for illuminating underlying drivers for energy use and emissions in society. This study applies an environmentally extended input‐output analysis to estimate household environmental impact (HEI) of urban Beijing households at different levels of development. The analysis covers direct and indirect energy use and emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxide (NOx). On the basis of observations of how HEI varies across income groups, prospects for near‐future changes in HEI are discussed. Results indicate that in 2007, an urban resident in Beijing used, on average, 52 gigajoules of total primary energy supply. The corresponding annual emissions were 4.2 tonnes CO2, 27 kilograms SO2, and 17 kilograms NOx. Of this, only 18% to 34% was used or emitted by the households directly. While the overall expenditure elasticity of energy use is around 0.9, there is a higher elasticity of energy use associated with transport. The results suggest that significant growth in HEI can be expected in the near future, even with substantial energy efficiency improvements.  相似文献   

8.
To reduce energy consumption and carbon dioxide (CO2) emissions in housing construction, the energy-intensive processes and life-cycle stages should be identified and integrated. The environmental impact of vertically integrated factory-built homes (VIHs) constructed with increased material inputs in Japan's northern island of Hokkaido was assessed using life-cycle inventory (LCI) analysis methods. Manufacturing process energy and CO2 intensities of the homes were evaluated based on the material inputs. They were compared with those of a counterpart home hypothetically built using the vertically integrated construction methods, but in accordance with the specifications of a less material-intensive conventional home (CH) in Hokkaido today. Cumulative household energy consumption and CO2 emissions were evaluated and compared with those of the production stages. The annual household energy consumption was compared among a VIH, a CH, and an average home in Hokkaido. The energy intensity of the VIH was 3.9 GJ production energy per m2 of floor area, 59% higher than that of the CH. Net CO2 emissions during VIH manufacturing processes were 293 kg/m2, after discounting the carbon fixation during tree growth. The cumulative use-phase household energy consumption and CO2 emissions of a VIH will exceed energy consumption and CO2 emissions during the initial production stage in less than six years. Although VIHs housed 21% more residents on average, the energy consumption per m2 was 17% lower than that of a CH. This may indicate that using more materials initially can lead to better energy efficiency.  相似文献   

9.
We developed a model of a national economy in which the phenomena of supply, demand, economic growth, and international trade are represented in terms of energy flows. In examining the structure of the economy, we distinguish between the energy embodied in capital assets used in the production and distribution of energy and that embodied in capital assets and goods that consume energy. Sources used to quantify the energy flows include: end‐use energy data by economic sector; International Energy Agency–style national energy balances, and national input‐output tables. As an example, the Canadian economy for 2008 produced 16.97 exajoules (EJ) of energy, which after net export of 6.16 EJ and other adjustments left a total primary energy consumption of 10.61 EJ. The energy supply and distribution sectors used close to 32% (3.36 EJ) of total primary consumption. Analysis of primary energy consumption shows that 25.14% was embodied in household consumption, 22.85% was consumed directly by households, 7.88% was embodied in government services, and 34.07% was embodied in exports. Of significance to economic growth, 7.14% was embodied in capital in energy demanding sectors, 1.25% in energy consuming personal assets, and 1.52% in supply sector capital. The energy return on energy investment was relatively constant, averaging 5.14 between 1990 and 2008. Capital investments required to decouple the Canadian economy from its dependence on fossil fuels are discerned.  相似文献   

10.
This study is a comparative life-cycle assessment (LCA) of two competing digital video disc (DVD) rental networks: the e-commerce option, where the customer orders the movies online, and the traditional business option, where the customer goes to the rental store to rent a movie. The analytical framework proposed is for a customer living in the city of Ann Arbor, Michigan in the United States. The primary energy and environmental performance for both networks are presented using a multicriterion LCA. The package selected by the traditional network is responsible for 67% of the difference in total energy consumption of the two alternatives. Results show that the e-commerce alternative consumed 33% less energy and emitted 40% less CO2 than the traditional option. A set of sensitivity analyses test the influence of distance traveled, transportation mode, and reuse of DVD and DVD packaging on the final results. The mode of transportation used by the customer in the traditional business model also affects global emissions and energy consumption. The customer walking to the store is by far the best option in the traditional network; however, the e-commerce option performed comparatively better despite all transportation modes tested. A novel economic indicator, ESAL, is used to compare different transportation modes based on the level of stress exerted on the pavement. The two networks are compared on the basis of cost accounting; consistent with its energy and environmental advantages, the e-commerce network also exerts lesser economic impact, by $1.17, for the functional unit tested.  相似文献   

11.
This article compares climate impacts of two heat‐pump systems for domestic heating, that is, energy consumption for space heating of a residential building. Using a life cycle approach, the study compared the energy use and greenhouse gas (GHG) emissions of direct electric heating, a conventional air‐source heat pump, and a novel ground‐source air heat pump innovated by a citizen user, to assess whether such user innovation holds benefit. The energy use of the heat pumps was modeled at six temperature intervals based on duration curves of outdoor temperature. Additionally, two heat pump end‐of‐life scenarios were analyzed. Probabilistic uncertainty analysis was applied using a Monte Carlo simulation. The results indicated that, in ideal conditions, that is, assuming perfect air mixing, the conventional air‐source heat pump's emissions were over 40% lower and the ground‐air heat pump's emissions over 70% lower than in the case of direct electric heating. Although proper handling of the refrigerant is important, total leakage from the retirement of the heat‐pump appliance would increase GHG emissions by just 10%. According to the sensitivity analysis, the most influential input parameters are the emission factor related to electricity and the amount of electricity used for heating.  相似文献   

12.
Consumption‐accounted greenhouse gas (GHG) emissions (GHGEs) vary considerably between households. Research originating from different traditions, including consumption research, urban planning, and environmental psychology, have studied different types of explanatory variables and provided different insights into this matter. This study integrates explanatory variables from different fields of research in the same empirical material, including socioeconomic variables (income, household size, sex, and age), motivational variables (proenvironmental attitudes and social norms), and physical variables (dwelling types and geographical distances). A survey was distributed to 2,500 Swedish households with a response rate of 40%. GHGEs were estimated for transport, residential energy, food, and other consumption, using data from both the survey and registers, such as odometer readings of cars and electricity consumption from utility providers. The results point toward the importance of explanatory variables that have to do with circumstances rather than motivations for proenvironmental behaviors. Net income was found to be the most important variable to explain GHGEs, followed by the physical variables, dwelling type, and the geographical distance index. The results also indicate that social norms around GHG‐intensive activities, for example, transport, may have a larger impact on a subject's emission level than proenvironmental attitudes.  相似文献   

13.
Globalization has been one main driver affecting our whole economy. Thus, greenhouse gas emissions (GHGs) associated with imports and exports should get addressed in addition to the national emission inventory according to the United Nations Framework Convention on Climate Change (UNFCCC), which is focused on territorial emissions only. To enable a correct calculation for imports and exports and to find the most emission‐intensive products and their origin, a product‐ and technology‐specific approach would be favorable which has not been applied up to now. This article addresses this research gap in developing and applying such an approach to calculate the GHGs behind consumption of products in Austria. It is based on physical flows combined with life‐cycle‐based emission factors and emission intensities derived from sector‐ and country‐specific energy mix, for calculating all emissions behind the production chain (resources to final products) of products consumed in Austria. The results have shown that consumption of products in Austria leads to about 60% more emissions than those of the national inventory and that the main part of these emissions comes from the provision of products. The most emission‐intensive products are coming from the chemical and the metal industry. In particular, imports are the main driver of these emissions and are more emission intensive than those produced in Austria. As a result, it is necessary to look at practical measures to reduce emissions along the production chain not only in Austria, but especially abroad as well.  相似文献   

14.
Representing the greenhouse gas (GHG) emissions attributable to plug‐in electric vehicles (PEV) in vehicle GHG emissions regulations is complex because of spatial and temporal variation in fueling sources and vehicle use. Previous work has shown that the environmental performance of PEVs significantly varies depending on the characteristics of the electricity grid and how the vehicle is driven. This article evaluates the U.S. Environmental Protection Agency's (EPA's) GHG emissions accounting methodology in current and future standards for new electrified vehicles. The current approach employed by the EPA in their 2017–2025 model year light‐duty vehicle GHG regulation is compared with an accounting mechanism where the actual regional sales of PEVs, and the regional electricity emission factor in the year sold, are used to determine vehicle compliance value. Changes to the electricity grid over time and regional vehicle sales are included in the modeling efforts. A projection of a future GHG regulation past the 2017–2025 rule is used to observe the effect of such a regional regulation. The results showed that the complexity involved in tracking and accounting for regional PEV sales will not dramatically increase the effectiveness of the regulations to capture PEV electricity‐related GHG emissions in the absence of a major policy shift. A discussion of the feasibility and effectiveness of a regional standard for PEVs, and notable examples of region‐specific regulations instated in past energy policies, is also addressed.  相似文献   

15.
This article examines an important class of information system that serves as the foundation for corporate energy and greenhouse gas (GHG) accounting: energy and carbon management systems (ECMS). Investors, regulators, customers, and employees increasingly demand that organizations provide information about their organizational energy use and GHG emissions. However, there is little transparency about how organizations use ECMS to meet such demands. To shed light on ECMS implementation and application, we collected extensive qualitative interview data from two service‐sector organizations: one that uses a spreadsheet‐based ECMS and another that implemented an ECMS provided by a third‐party vendor. Our analysis of collected data revealed numerous challenges in the areas of business processes, managerial capabilities, data capture and integration, and data quality. Though our study is built on only two organizations and requires confirmation in large‐sample surveys, we provide several recommendations for organizations regarding ECMS. We also provide suggestions for future studies to build on our tentative results.  相似文献   

16.
This study presents a cradle‐to‐gate assessment of the energy balances and greenhouse gas (GHG) emissions of Indonesian palm oil biodiesel production, including the stages of land‐use change (LUC), agricultural phase, transportation, milling, biodiesel processing, and comparing the results from different farming systems, including company plantations and smallholder plantations (either out growers or independent growers) in different locations in Kalimantan and Sumatra of Indonesia. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6–49.2 GJ t?1 biodiesel yr?1) as well as GHG emissions (1969.6–5626.4 kg CO2eq t?1 biodiesel yr?1). The output to input ratios are positive in all cases. The largest GHG emissions result from LUC effects, followed by the transesterification, fertilizer production, agricultural production processes, milling, and transportation. Ecosystem carbon payback times range from 11 to 42 years.  相似文献   

17.
Corn-ethanol production is expanding rapidly with the adoption of improved technologies to increase energy efficiency and profitability in crop production, ethanol conversion, and coproduct use. Life cycle assessment can evaluate the impact of these changes on environmental performance metrics. To this end, we analyzed the life cycles of corn-ethanol systems accounting for the majority of U.S. capacity to estimate greenhouse gas (GHG) emissions and energy efficiencies on the basis of updated values for crop management and yields, biorefinery operation, and coproduct utilization. Direct-effect GHG emissions were estimated to be equivalent to a 48% to 59% reduction compared to gasoline, a twofold to threefold greater reduction than reported in previous studies. Ethanol-to-petroleum output/input ratios ranged from 10:1 to 13:1 but could be increased to 19:1 if farmers adopted high-yield progressive crop and soil management practices. An advanced closed-loop biorefinery with anaerobic digestion reduced GHG emissions by 67% and increased the net energy ratio to 2.2, from 1.5 to 1.8 for the most common systems. Such improved technologies have the potential to move corn-ethanol closer to the hypothetical performance of cellulosic biofuels. Likewise, the larger GHG reductions estimated in this study allow a greater buffer for inclusion of indirect-effect land-use change emissions while still meeting regulatory GHG reduction targets. These results suggest that corn-ethanol systems have substantially greater potential to mitigate GHG emissions and reduce dependence on imported petroleum for transportation fuels than reported previously.  相似文献   

18.
Modifying finishing strategies within established production systems has the potential to increase beef output and farm profit while reducing greenhouse gas (GHG) emissions. Thus, the objectives of this study were to investigate the effects of finishing duration on animal performance of Holstein-Friesian (HF) bulls and steers and evaluate the profitability and GHG emissions of these finishing strategies. A total of 90 HF calves were assigned to a complete randomised block design; three bull and three steer finishing strategies. Calves were rotationally grazed in a paddock system for the first season at pasture, housed and offered grass silage ad libitum plus 1.5 kg DM of concentrate per head daily for the first winter and returned to pasture for a second season. Bulls were slaughtered at 19 months of age and either finished indoors on concentrates ad libitum for 100 days (19AL), finished at pasture supplemented with 5 kg DM of concentrate per head daily for 100 (19SP) or 150 days (19LP). Steers were slaughtered at 21 months of age and finished at pasture, supplemented with 5 kg DM of concentrate per head daily for 60 (21SP) and 110 days (21LP) or slaughtered at 24 months of age and finished indoors over the second winter on grass silage ad libitum plus 5 kg DM of concentrate per head daily (24MO). The Grange Dairy Beef Systems Model and the Beef Systems Greenhouse Gas Emissions Model were used to evaluate profitability and GHG emissions, respectively. Average daily gain during the finishing period (P<0.001), live weight at slaughter (P<0.01), carcass weight (P<0.05) and fat score (P<0.001) were greater for 19AL than 19SP and 19LP, respectively. Similarly, concentrate dry matter intake was greater for 19AL than 19SP; 19LP was intermediate (P<0.001). Live weight at slaughter (P<0.001), carcass weight (P<0.001), conformation score (P<0.05) and fat score (P<0.001) were greater for 24MO than 21SP and 21LP, respectively. During the finishing period concentrate dry matter intake was greater for 21LP than 21SP with 24MO intermediate; 542, 283 and 436 kg DM, respectively. Although pasture-based finishing strategies had lower gross output values, concentrate feed costs were also reduced thus net margin was greater than indoor finishing strategies. Reducing concentrate input increased GHG emissions for bulls and steers slaughtered at the same age, respectively. Although prolonging the finishing duration reduced GHG emissions for bull and steer production systems, finishing bulls and steers over a longer period at pasture did not enhance animal performance and profit.  相似文献   

19.
Southern pink shrimp (Penaeus notialis) are an important Senegalese export commodity. Artisanal fisheries in rivers produce 60%. Forty percent are landed in trawl fisheries at sea. The shrimp from both fisheries result in a frozen, consumer‐packed product that is exported to Europe. We applied attributional life cycle assessment (LCA) to compare the environmental impact of the two supply chains and identify improvement options. In addition to standard LCA impact categories, biological impacts of each fishery were quantified with regard to landed by‐catch, discard, seafloor impact, and size of target catch. Results for typical LCA categories include that artisanal fisheries have much lower inputs and emissions in the fishing phase than does the industrial fishery. For the product from artisanal fisheries, the main part of the impact in the standard LCA categories occurs during processing on land, mainly due to the use of heavy fuel oil and refrigerants with high global warming and ozone depletion potentials. From a biological point of view, each fishery has advantages and drawbacks, and a number of improvement options were identified. If developing countries can ensure biological sustainability of their fisheries and design the chain on land in a resource‐efficient way, long distance to markets is not an obstacle to sustainable trading of seafood products originating in artisanal fisheries.  相似文献   

20.
California has large and diverse biomass resources and provides a pertinent example of how biomass use is changing and needs to change, in the face of climate mitigation policies. As in other areas of the world, California needs to optimize its use of biomass and waste to meet environmental and socioeconomic objectives. We used a systematic review to assess biomass use pathways in California and the associated impacts on climate and air quality. Biomass uses included the production of renewable fuels, electricity, biochar, compost, and other marketable products. For those biomass use pathways recently developed, information is available on the effects—usually beneficial—on greenhouse gas (GHG) emissions, and there is some, but less, published information on the effects on criteria pollutants. Our review identifies 34 biomass use pathways with beneficial impacts on either GHG or pollutant emissions, or both—the “good.” These included combustion of forest biomass for power and conversion of livestock-associated biomass to biogas by anaerobic digestion. The review identified 13 biomass use pathways with adverse impacts on GHG emissions, criteria pollutant emissions, or both—the “bad.” Wildfires are an example of one out of eight pathways which were found to be bad for both climate and air quality, while only two biomass use pathways reduced GHG emissions relative to an identified counterfactual but had adverse air quality impacts. Issues of high interest for the “future” included land management to reduce fire risk, future policies for the dairy industries, and full life-cycle analysis of biomass production and use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号