首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Orlowski  P Champeil 《Biochemistry》1991,30(47):11331-11342
Using rapid filtration, we investigated the kinetics of release toward the lumen of sarcoplasmic reticulum vesicles of the two Ca2+ ions transported by the Ca(2+)-dependent ATPase of these vesicles. Release rates at 20 degrees C were measured by three methods, with vesicles previously made leaky with an ionophore. First, we measured the rate at which 45Ca2+ bound to ATPase approached its steady-state level after addition of ATP to the 45Ca(2+)-equilibrated ATPase. At pH 6 in the absence of potassium, the observed kinetics did not reveal any very fast phase of 45Ca2+ dissociation from phosphorylated ATPase. Second, we measured the kinetics of 45Ca2+ dissociation from phosphorylated ATPase in a "chase" experiment, by isotopic dilution of calcium under turnover conditions in the presence of potassium. We found that these kinetics were essentially monophasic. Moreover, when they were measured in the presence of a high concentration of calcium, designed to saturate the low-affinity calcium transport sites on the lumenal side of the ATPase, they only departed slightly from monophasic behavior, irrespective of the experimental pH (pH 6, 7, or 9). This small perturbation by high calcium concentrations of the observed dissociation kinetics was attributed to ADP-facilitated rapid exchange of 40Ca2+ for Mg2+ at the catalytic site of phosphorylated ATPase. The third method was based on the fact that phosphorylation-induced 45Ca2+ occlusion occurred faster than 45Ca2+ dissociation from nonphosphorylated ATPase: here, we measured the rate of 45Ca2+ internalization on addition to 45Ca(2+)-saturated ATPase of an unlabeled ATP-containing medium. This method allowed separate observation of the dissociation kinetics of each of the two 45Ca2+ ions bound to phosphorylated ATPase, after either one or the other had been labeled by a preliminary partial isotopic exchange in the non-phosphorylated state of the ATPase. We found that after ATP-induced phosphorylation, the two 45Ca2+ ions dissociated toward the lumenal medium with virtually identical rate constants; this was observed under different ionic and pH conditions and also in the presence of a high Ca2+ concentration. As a control, the same partial isotopic exchange procedure allowed us to confirm that, in contrast, when ATP was absent from the final dissociation medium, the two 45Ca2+ ions dissociated from nonphosphorylated ATPase toward the cytoplasmic medium at different rates, the one bound more deeply only dissociating after a lag period corresponding to dissociation of the superficial one.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

3.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

4.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

5.
The effects of thapsigargin (TG), a specific inhibitor of intracellular Ca(2+)-ATPases, were studied on vesicular fragments of sarcoplasmic reticulum (SR) membranes. Inhibition of Ca2+ transport and ATPase activity was observed following stoichiometric titration of the membrane bound enzyme with TG. When Ca2+ binding to the enzyme was measured in the absence of ATP, or when one cycle of Ca(2+)-dependent enzyme phosphorylation by ATP was measured under conditions preventing turnover, protection against TG by Ca2+ was observed. The protection by Ca2+ disappeared if the phosphoenzyme was allowed to undergo turnover, indicating that a state reactive to TG is produced during enzyme turnover, whereby a dead end complex with TG is formed. Enzyme phosphorylation with Pi, ATP synthesis, and Ca2+ efflux by the ATPase in its reverse cycling were also inhibited by TG. However, under selected conditions (millimolar Ca2+ in the lumen of the vesicles, and 20% dimethyl sulfoxide in the medium) TG permitted very low rates of enzyme phosphorylation with Pi and ATP synthesis in the presence of ADP. It is concluded that the mechanism of ATPase inhibition by TG involves mutual exclusion of TG and high affinity binding of external Ca2+, as well as strong (but not total) inhibition of other partial reactions of the ATPase cycle. TG reacts selectively with the state acquired by the ATPase in the absence of Ca2+. This state is obtained either by enzyme exposure to EGTA, or by utilization of ATP and consequent displacement of bound Ca2+ during catalytic turnover.  相似文献   

6.
The effect of low concentrations of Triton X-100, below that required for solubilization, on the properties of the Ca2+-ATPase of sarcoplasmic reticulum has been investigated. The changes observed have been compared with the changes produced on solubilization of the vesicles at higher concentrations of detergent. In the range 0.02-0.05% (w/v) Triton X-100, concentrations which did not solubilize the vesicles but completely inhibit ATP-mediated Ca2+ accumulation, 8-16 mol of detergent/mol of ATPase was associated with the vesicles. This amount of Triton X-100 altered equilibrium Ca2+ binding and Ca2+ activation of p-nitrophenyl phosphate and of ATP hydrolysis in a manner which lowered the apparent Ca2+ cooperatively (nH = 1 or less), and which increased the K0.5(Ca) value 20-fold. These changes in Ca2+ binding and activation parameters were associated with a 90% lower Ca2+-induced change in fluorescence of fluorescein isothiocyanate modified enzyme. The rates of p-nitrophenyl phosphate and of ATP hydrolysis, at saturating Ca2+ concentrations, were about half that of detergent-free vesicles. The rate constant for phosphoenzyme hydrolysis in the absence of Ca2+, calculated from medium Pi in equilibrium HOH exchange and phosphoenzyme measurements, was lowered from 38 to 11 s-1. The steady-state level of phosphoenzyme formed from Pi in the absence of Ca2+ was slightly increased up to 0.02% Triton X-100 and then decreased about half at 0.05%. The synthesis of ATP in single turnover type experiments was not affected by detergent binding. Pi in equilibrium ATP exchange was inhibited 65%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have investigated here the pre-steady state kinetics of sarcoplasmic reticulum ATPase incubated under conditions where significant amounts of Mg.ATP and Ca.ATP coexist, both of them being substrates for the ATPase. We confirmed that these two substrates are independently hydrolyzed by the ATPase, which thus apparently catalyzes Pi production by two simultaneous and separate pathways. External calcium (or the Ca2+/Mg2+ ratio) determines the extent to which Ca2+ or Mg2+ is bound at the phosphorylation site, while internal calcium controls the rate of processing of both the slow, calcium-containing and the fast, magnesium-containing phosphoenzyme. Time-dependent binding of calcium at the catalytic site is correlated with the observed burst of Pi liberation, which therefore results from reequilibration during pre-steady state of magnesium- and calcium-containing phosphoenzyme pools. Independently of direct exchange of metal at the catalytic site, ADP produced by the hydrolysis reaction contributes to reequilibration of these pools through reversal of phosphorylation by the ATP-ADP exchange pathway.  相似文献   

8.
L de Meis  G Inesi 《Biochemistry》1985,24(4):922-925
Sarcoplasmic reticulum ATPase is phosphorylated by ATP in the presence of calcium, with a consequent reduction of the affinity of the binding sites for calcium and dissociation of the divalent cation from the enzyme. ATPase phosphorylation with Pi, on the other hand, requires prior removal of calcium from the enzyme, indicating that the energy requirement for phosphorylation of the enzyme-calcium complex can be met by ATP but not by Pi. We find that when the energy yield of the Pi reaction with the enzyme is increased by the addition of dimethyl sulfoxide to the medium, ATPase phosphorylation with Pi occurs even in the presence of calcium, and the binding sites undergo a reduction in affinity with consequent dissociation of Ca2+ from the enzyme, in analogy to the effect of ATP. It is thereby demonstrated experimentally that an essential step in the coupling of catalytic and transport activities is an interdependence and mutual ligand exclusion of the phosphorylation and calcium sites, in which ATP does not play a direct role. An important difference between the effects of ATP and Pi is that the former produces dissociation of Ca2+ inside the vesicles as the result of advancement of the catalytic cycle in the forward direction, while Pi produces dissociation of calcium into the outer medium as a consequence of equilibration of enzyme states producing a shift in the reverse direction of the enzyme cycle. These observations demonstrate how equilibration of intermediate enzyme states determines extent and direction of overall reaction flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A M Hanel  W P Jencks 《Biochemistry》1991,30(47):11320-11330
The internalization of 45Ca by the calcium-transporting ATPase into sarcoplasmic reticulum vesicles from rabbit muscle was measured during a single turnover of the enzyme by using a quench of 7 mM ADP and EGTA (25 degrees C, 5 mM MgCl2, 100 mM KCl, 40 mM MOPS.Tris, pH 7.0). Intact vesicles containing either 10-20 microM or 20 mM Ca2+ were preincubated with 45Ca for approximately 20 s and then mixed with 0.20-0.25 mM ATP and excess EGTA to give 70% phosphorylation of Etot with the rate constant k = 300 s-1. The two 45Ca ions bound to the phosphoenzyme (EP) become insensitive to the quench with ADP as they are internalized in a first-order reaction with a rate constant of k = approximately 30 s-1. The first and second Ca2+ ions that bind to the free enzyme were selectively labeled by mixing the enzyme and 45Ca with excess 40Ca, or by mixing the enzyme and 40Ca with 45Ca, for 50 ms prior to the addition of ATP and EGTA. The internalization of each ion into loaded or empty vesicles follows first-order kinetics with k = approximately 30 s-1; there is no indication of biphasic kinetics or an induction period for the internalization of either Ca2+ ion. The presence of 20 mM Ca2+ inside the vesicles has no effect on the kinetics or the extent of internalization of either or both of the individual ions. The Ca2+ ions bound to the phosphoenzyme are kinetically equivalent. A first-order reaction for the internalization of the individual Ca2+ ions is consistent with a rate-limiting conformational change of the phosphoenzyme with kc = 30 s-1, followed by rapid dissociation of the Ca2+ ions from separate independent binding sites on E approximately P.Ca2; lumenal calcium does not inhibit the dissociation of calcium from these sites. Alternatively, the Ca2+ ions may dissociate sequentially from E approximately P.Ca2 following a rate-limiting conformational change. However, the order of dissociation of the individual ions can not be distinguished. An ordered-sequential mechanism for dissociation requires that the ions dissociate much faster (k greater than or equal to 10(5) s-1) than the forward and reverse reactions for the conformational change (k-c = approximately 3000 s-1). Finally, the Ca2+ ions may exchange their positions rapidly on the phosphoenzyme (kmix greater than or equal to 10(5) s-1) before dissociating. A Hill slope of nH = 1.0-1.2, with K0.5 = 0.8-0.9 mM, for the inhibition of turnover by binding of Ca2+ to the low-affinity transport sites of the phosphoenzyme was obtained from rate measurements at six different concentrations of Mg2+.  相似文献   

10.
Effect of divalent cations bound to the phosphoenzyme intermediate of the ATPase of sarcoplasmic reticulum was investigated at 0 degree C and pH 7.0 using the purified ATPase preparations. Our previous study (Shigekawa, M., Wakabayashi, S., and Nakamura, H. (1983) J. Biol. Chem. 258, 14157-14161) indicated that 1 mol of the ADP-sensitive phosphoenzyme (E1P) formed from CaATP has 3 mol of high affinity binding sites for Ca2+, of which two are transport sites for calcium while the remainder is the acceptor site for calcium derived from the substrate, CaATP ("substrate site"). When incubated with a chelator of divalent cation, E1P formed from CaATP released all of its bound calcium to form a divalent cation-free phosphoenzyme. Evidence was presented that calcium dissociation from the substrate site was faster than that from the transport sites and primarily responsible for the ADP sensitivity loss of E1P induced by the chelator. Divalent cation-free phosphoenzyme was kinetically stable but when treated with divalent cations, it behaved similarly to the ADP-insensitive phosphoenzyme (E2P) which is the normal reaction intermediate of ATP hydrolysis. 45Ca bound at the substrate site on E1P formed from 45CaATP exchanged readily with nonradioactive ionized Ca2+ in the reaction medium whereas 45Ca at the transport sites on E1P was displaced only at a very slow rate which was almost the same as that for the phosphoenzyme hydrolysis. It was suggested that calcium at the transport sites on E1P formed from CaATP is released only after the rate-limiting conformational transition of the phosphoenzyme from E1P to E2P and that removal of calcium by a chelator from the substrate site facilitates this conformational transition, thereby allowing calcium bound at the transport sites to be released readily from the phosphoenzyme.  相似文献   

11.
A microsomal fraction resembling striated muscle sarcoplasmic reticulum was isolated from uterine smooth muscle. ATP induces calcium accumulation in this fraction. Increased temperature enhances calcium accumulation and calcium-activated ATPase. In the absence of ATP, approximately 35% of the intrinsic calcium exchanges with the 45Ca in the incubation medium. In the presence of ATP, exchange of intrinsic calcium with 45Ca increases by an amount which equals the ATP-dependent calcium binding. In preparations partially preloaded with calcium, a steady state of bound calcium is reached when the ATP is exhausted. Calcium is released under these conditions by prostaglandins E2 and F2alpha, but not by PGF1beta. The antibiotic ionophores X537A and A23187, as well as oxytocin, also release calcium previously accumulated under ATP stimulation. None of these agents, with the exception of oxytocin, release intrinsic calcium. Thus, the effect of prostaglandins resembles that of the ionophores, suggesting an ionophoretic action of these prostaglandins. The release of calcium conforms with the in vivo smooth muscle contracting action of these agents.  相似文献   

12.
J A Teruel  G Inesi 《Biochemistry》1988,27(16):5885-5890
The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca2+-ATPase of sarcoplasmic reticulum vesicles. We found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in our preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon "back inhibited" by the rise of Ca2+ concentration in the lumen of the vesicles. When the "back inhibition" is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. No secondary activation of acetyl phosphate utilization by the FITC-enzyme was obtained with millimolar nucleotide. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

14.
Steady-state ATPase activity, calcium binding, formation of phosphorylated enzyme intermediate with ATP in the presence of Ca2+, or with Pi in the absence of Ca2+, and association of ATPase molecules into bidimensional crystals, were studied using vesicular fragments of sarcoplasmic reticulum. The vesicles were exposed to increasing concentrations of urea in order to produce stepwise perturbations of protein structure and to test the effect of such perturbations on the partial reactions and crystallization pattern of sarcoplasmic reticulum ATPase. It was found that low concentrations of urea produce specific inhibition of Pi binding and enzyme phosphorylation with Pi (but not with ATP). Intermediate concentrations of urea reduce calcium binding affinity and cooperativity, while the ability of the enzyme to be phosphorylated with ATP and to form dimeric arrays is retained. These observations demonstrate that the sarcoplasmic reticulum ATPase is sensitive to physical perturbations producing specific and reversible changes in the Pi and calcium binding domains. These changes interfere with enzyme turnover, indicating that conformational effects related to binding and dissociation of Pi and calcium are tightly coupled to catalysis and energy transduction. Higher concentrations of urea produce irreversible denaturation, accompanied by total inhibition of calcium binding, enzyme phosphorylation with ATP, and association of ATPase chains in bidimensional crystals. Under these conditions, protein unfolding is manifested by a sharp reduction in the fluorescence of intrinsic tryptophan residues and of a covalently bound probe. These observations suggest that dimeric association and a tendency to form bidimensional crystals correspond to a basic property of the enzyme, which is linked to its native structure and whose character may change in the presence of ligands and/or during the catalytic cycle. On the other hand, the decavanadate-induced crystallization pattern cannot be interpreted in terms of a mechanistic relationship of ATPase dimerization with one of the intermediate states of the catalytic cycle.  相似文献   

15.
Transport of Ca2+ in microsomal membrane vesicles of the Tetrahymena has been investigated using arsenazo III as a Ca2+ indicator. The microsomes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Muto, Y. and Nozawa, Y. (1984) Biochim. Biophys. Acta 777, 67-74) accumulated calcium upon addition of ATP and Ca2+ sequestered into microsomal vesicles was rapidly discharged by the Ca2+ ionophore A23187. Kinetic studies indicated that the apparent Km for free Ca2+ and ATP are 0.4 and 59 microM, respectively. The Vmax was about 40 nmol/mg protein per min at 37 degrees C. The calcium accumulated during ATP-dependent uptake was released after depletion of ATP in the incubation medium. Furthermore, addition of trifluoperazine which inhibited both (Ca2+ + Mg2+)-ATPase and ATP-dependent Ca2+ uptake rapidly released the calcium accumulated in the microsomal vesicles. These observations suggest that Tetrahymena microsome contains both abilities to take up and to release calcium and may act as a Ca2+-regulating site in this organism.  相似文献   

16.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

17.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

18.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

19.
Calcium and proton dependence of sarcoplasmic reticulum ATPase   总被引:6,自引:1,他引:5       下载免费PDF全文
The influence of Ca2+ and H+ concentrations on the sequential reactions of the ATPase cycle was studied by a series of pre-steady state and steady state experiments with sarcoplasmic reticulum vesicles. It is shown that H+ competition with calcium binding results in a reduced population of activated enzyme, which is manifested by a lower level of phosphorylated enzyme intermediate following addition of ATP. Further effects of Ca2+ and H+ are demonstrated on the progression of the phosphoenzyme through the reaction cycle and on the final hydrolytic cleavage of Pi. The overall dependence of steady state ATP flux on Ca2+ and H+ concentrations in leaky vesicles is expressed by a series of curves showing that as the H+ concentration is raised higher Ca2+ concentrations are required to obtain half-maximal ATP fluxes. At saturating Ca2+, maximal ATP fluxes are observed at an intermediate H+ concentration (pH 7.2), while lower levels are obtained as the H+ concentration is reduced (to pH 8) or increased (to pH 6). A preliminary model is then proposed based on the presence of two interacting domains permitting competitive binding of Ca2+ or H+, per each catalytic site undergoing phosphorylation by ATP. The model considers three main states and thirteen substates (depending on the occupancy of the binding sites in each state by Ca2+, H+, or neither) in the progression of the ATP cycle, coupled to transport of Ca2+ and counter transport of H+ in leaky vesicles. Considering the preliminary nature of the model and the experimental scatter, a rather satisfactory agreement is noted between a family of curves generated by theoretical analysis and the ATP flux curves obtained experimentally.  相似文献   

20.
The relationship between calcium binding and ATPase activity has been investigated for guinea pig cardiac sarcolemma. The concentrations of calcium ions and of ATP were the main factors in determining the amount of calcium bound. With a saturating concentration of ATP, at low calcium concentrations (0.1 mM) more than 50% of the total calcium bound was ATP dependent while at high concentrations of calcium (10 mM) only 20% of the calcium bound was ATP dependent. The ATP-dependent calcium binding process involves one class of calcium binding sites while the non-ATP-dependent calcium binding process involves two classes of binding sites. Inhibitor studies of Ca2+-stimulated MgATPase, MgATPase, and CaATPase activities suggest Ca2+ and Mg2+ are either interacting with different sites on the same enzyme or with different enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号