首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
SUMMARY. 1. The chief objective was to construct a thermal tolerance polygon for juvenile Atlantic salmon, Salmo salar L., using fish from four groups and two populations: two age groups from one population (0+, 1+ parr from River Leven), two size groups from the other population (slow and Fast growing 1+ parr from River Lune). 2. Fish were acclimated to constant temperatures of 5, 10, 15, 20, 25 and 27°C; then the temperature was raised or lowered at 1°C h?1 to determine the upper and lower limits for feeding and survival over 10 min, 100 min, 1000 min and 7 days. As they were not significantly different between the four groups of fish, values at each acclimation temperature were pooled to provide arithmetic means (with SE) for the thermal tolerance polygon. 3. Incipient lethal levels (survival over 7 days) defined a tolerance zone within which salmon lived for a considerable time; upper mean incipient values increased with increasing acclimation temperature to reach a maximum of 27.8±0.2°C, lower mean incipient values were below 0°C and were therefore undetermined at acclimation temperatures <20°C but increased at higher acclimation temperatures to 2.2±0.4°C. Resistance to thermal stress outside the tolerance zone was a function of time; the ultimate lethal level (survival for 10 min) increased with acclimation temperature to a maximum of 33°C whilst the minimum value remained close to 0°C. Temperature limits for feeding increased slightly with acclimation temperature to upper and lower mean values of 22.5±0.3°C and 7.0±0.3°C. 4. In spite of different methodologies, values in the present investigation are similar to those obtained in previous, less comprehensive studies in the laboratory. They also agree with field observations on the temperature limits for feeding and survival. Thermal tolerance polygons are now available for eight species of salmonids and show that the highest temperature limits for feeding and survival are those recorded for juvenile Atlantic salmon.  相似文献   

2.
Austrofundulus limnaeus thrive in ephemeral ponds that may experience temperatures spanning a range of over 20°C on a daily basis. We hypothesized that A. limnaeus may have mechanisms, either behavioral or physiological, that allow them to support successful reproduction in this environment. To evaluate this hypothesis, we exposed male and female adult A. limnaeus to constant 26°C and cycling 21–37°C acclimation regimes in the laboratory and then determined their temperature preference and reproductive fitness. Temperature preference was determined using a thermal gradient. We demonstrated that A. limnaeus is capable of accurate behavioral thermoregulation, has a final thermal preferendum near 26°C, and exhibits a daily cycle of temperature preference. Exposure to a cycling temperature regime has an acute effect on thermal preference that differs between the sexes. Reproductive capability was negatively affected by the cyclic temperature exposure. These findings suggest that thermal partitioning between males and females may be a natural part of the ecology of A. limnaeus. In addition, it appears that behavioral thermoregulation, or partitioning of reproductive events to the cool parts of the thermoperiod, are likely to be critical to support successful reproduction in natural populations of A. limnaeus.  相似文献   

3.
Temperature and daylength responses were determined in culture for isolates of the red alga Cystoclonium purpureum (Hudson) Batters from Nova Scotia (NS, Canada), Helgoland (HE, Germany), and Roscoff (RO, France). Most isolates survived temperatures of –1.5°/–2° to 23°C, whereas 25°C was lethal. Only the RO-gametophytes died at 23°C. Optimal growth conditions were 10°–20°C in both long and short days for the NS isolates and 8°–15°C and 8°–18°C at daylengths of >12 h for the RO and HE isolates, respectively. Tetrasporophytes and gametophytes of the NS isolate reproduced at 10°–20°C in long and short days within 5 months. At lower temperatures reproduction was limited or slow. The European isolates formed tetrasporangia at 10°–20°C (HE) or 5°–l8°C(RO), spermatangia at 5°–15°C (HE) or 5°–20°C (RO), and carpospores at 5°–15°C(HE) or 10°–15°C (RO). Short days either blocked or delayed reproduction of the European isolates. The phenology of C. purpureum was studied at Helgoland and Roscoff, where similar seasonal patterns were observed. In early spring, growth was rapid and plants started to form reproductive structures. In summer, tetra-and carpospores were shed followed by degeneration of the upright axes while branched holdfasts persisted. New upright axes and juvenile plants were formed in autumn, but these remained small during the winter months. Published data indicate that the seasonal pattern at Nova Scotia is similar, although the onset of growth and reproduction is delayed until the end of spring. These observations correspond well with the results of the experiments. The life history of C. purpureum is regulated by temperature and daylength. In the eastern Atlantic, the limiting effect of short days confines growth and reproduction to spring and summer. In the western Atlantic, low winter temperatures alone bring about the same seasonal pattern. After plants have reproduced, uprights degenerate in spite of continuing favorable conditions.  相似文献   

4.
The heteropteran predator Geocoris punctipes (Say) has been used in augmentative biological control since 2000 to control Lepidoptera. However, surprisingly, few data are available about the influence of temperature on its population development, which is of key importance to plan the number and moment of releases to obtain sufficient pest reduction. The objective of this study was to evaluate daily and total fecundity, longevity and life table parameters (mx, lx, rm, R, λ, T and TD) of G. punctipes at constant (16.8°C, 21.5°C, 24.5°C and 28.3°C) and corresponding varying (day/night) (21/11°C, 24/18°C, 27/21°C and 30/26°C) temperatures. Pairs of adult predators aged 24 h and originating from nymphs exposed to the same temperature regimes were kept at the above‐mentioned temperature regimes in Petri dishes containing Anagasta kuehniella (Zeller) eggs and an oviposition substrate. Tests were conducted in climatic chambers at the different temperature regimes and a RH 70 ± 10% and a 14L: 10D photoperiod. Reproduction, longevity and life table parameters were significantly affected by temperature, with clear differences between treatments at low (16.8°C, 21/11°C, 21.5°C, 24/18°C) or a high (24.5°C, 27/21°C, 28.3°C, 30/26°C) temperature regimes. Highest reproduction and fastest population growth of G. punctipes took place at average temperatures ranging from 24.5°C to 30°C, and neither reproduction nor population growth was negatively influenced by varying temperatures at any of the temperature regimes.  相似文献   

5.
Egg maturation in Calliphora vicina is known to occur within a wide range of temperatures, from 12°C to nearly 30°C (Vinogradova, 1991). Photoperiodism has no effect on this process. Some females enter diapause already at 20°C; their fraction increases at lower temperatures and reaches 100% at 6°C. Reproducing females with eggs can survive for a long time and even lay eggs at low temperatures (4–5°C). Experiments with C. vicina from Leningrad Province revealed some effects of the diet (liver or fish) and temperature on the fly reproduction. At 20 and 25°C, 7–10-day old females begin to oviposit, but at 20°C egg maturation is observed in 98% of females feeding on liver and in only 5% of females feeding on fish. On the liver diet, the mean daily fecundity is significantly correlated with the day of oviposition but not with the temperature. At 20°C a significant correlation is observed between the mean daily fecundity and both the day of oviposition and food. The total number of eggs laid by flies after feeding on fish is half that produced after feeding on liver. The optimal conditions for Calliphora vicina cultivation are a 16-h light day, temperatures within the range from 20 to 25°C, and liver as food.  相似文献   

6.
The year-round thermal habitat at sea for adult Atlantic salmon Salmo salar (n = 49) from northern Norway was investigated using archival tags over a 10 year study period. During their ocean feeding migration, the fish spent 90% of the time in waters with temperatures from 1.6–8.4°C. Daily mean temperatures ranged from −0.5 to 12.9°C, with daily temperature variation up to 9.6°C. Fish experienced the coldest water during winter (November–March) and the greatest thermal range during the first summer at sea (July–August). Trends in sea-surface temperatures influenced the thermal habitat of salmon during late summer and autumn (August–October), with fish experiencing warmer temperatures in warmer years. This pattern was absent during winter (November–March), when daily mean temperatures ranged from 3.4–5.0°C, in both colder and warmer years. The observations of a constant thermal habitat during winter in both warmer and colder years, may suggest that the ocean distribution of salmon is flexible and that individual migration routes could shift as a response to spatiotemporal alterations of favourable prey fields and ocean temperatures.  相似文献   

7.
The tomato red spider mite, Tetranychus evansi, is reported as a severe pest of tomato and other solanaceous crops from Africa, from Atlantic and Mediterranean Islands, and more recently from the south of Europe (Portugal, Spain and France). A population of the predaceous mite Phytoseiulus longipes has been recently found in Brazil in association with T. evansi. The objective of this paper was to assess the development and reproduction abilities of this strain on T. evansi under laboratory conditions at four temperatures: 15, 20, 25 and 30°C. The duration of the immature phase ranged from 3.1 to 15.4 days, at 30 and 15°C, respectively. Global immature lower thermal threshold was 12.0°C. Immature survival was high at all temperatures tested (minimum of 88% at 30°C). The intrinsic rate of increase (r m) of P. longipes ranged from 0.091 to 0.416 female/female/day, at 15 and 30°C, respectively. P. longipes would be able to develop at a wide range of temperatures feeding on T. evansi and has the potential to control T. evansi populations.  相似文献   

8.
1. The chief objectives were to analyse and model experimental data for maximum growth and food consumption of Atlantic salmon parr (Salmo salar) collected from a cold glacier fed river in western Norway. The growth and feeding models were also applied to groups of Atlantic salmon growing and feeding at rates below the maximum. The growth models were validated by comparing their predictions with observed growth in the river supplying the experimental fish.
2. Two different models were fitted, one originally developed for British salmon and the other based on a model for bacterial growth. Both gave estimates for optimum temperature for growth at 18–19 °C, somewhat higher than for Atlantic salmon from Britain. Higher optimal temperature for growth in salmon from a cold Norwegian river than from British rivers does not concur with predictions from the thermal adaptation hypothesis.
3. Model parameter estimates differed among growth groups in that the lower critical temperature for growth increased from fast to slow growing individuals. In contrast to findings for brown trout (Salmo trutta), the optimum temperature for growth did not decrease with decreasing levels of food consumption.
4. A new and simple model showed that food consumption (expressed in energy terms) peaked at 19.5–19.8 °C, which is similar to the optimal temperature for growth. Feeding began at a temperature 1.5 °C below the lower temperature for growth and ended about 1 °C above the maximum temperature for growth. Model parameter estimates for consumption differed among growth groups in a manner similar to the growth models. Maximum consumption was lower for Atlantic salmon than for brown trout, except at temperatures above 18 °C.
5. By combining the growth and food consumption models, growth efficiency was estimated and reached a maximum at about 14 °C for fast growing individuals, increasing to nearly 17 °C for slow growing ones, although it was lower overall for the latter group. Efficiency also declined with increasing fish size. Growth efficiency was generally higher for Atlantic salmon than for brown trout, particularly at high temperature.  相似文献   

9.
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side‐blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.  相似文献   

10.
Daily growth increments were studied in otoliths of early stage Oreochromis aureus (Cichlidae, Teleostei). A laboratory experiment was carried out on the effect of temperature and food ratio on the otolith growth of juvenile fish. Juvenile O. aureus were reared at two different temperatures, 17°C and 28°C respectively. The young fish were fed two different ratios Trouvit beginning with the first day of swimming and external feeding. Samples were taken at random from each group and the sagitta otoliths were examined. Otolith growth was linearly related to somatic growth of individual fish. Otolith microstructure analysis showed that increment formation began two to three days prior to the transition to the free-swimming stage and continued thereafter following a daily pattern. Temperature and food ratios had a direct influence on the increment widths of the otouths.  相似文献   

11.
This study investigated the effects of menstrual cycle on color preference in nine normally menstruating female subjects. They were instructed to choose their preferred color out of 45 Munsell hues every 5 min at ambient temperatures (T a) of 28°C (630-800 h), from 28°C to 23°C (800-900 h) and at 23°C (900-930 h). Warmer color hues were preferred during the luteal phase than the follicular phase at 28°C, while there did not exist any significant differences at other T as. The findings that a preference for warmer colors occurred in the luteal phase at 28°C is discussed in terms of the load error between actual core temperature and its setpoint.  相似文献   

12.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   

13.
Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25?°C) and another that allowed females to thermoregulate at their preferred body temperature (17–45?°C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.  相似文献   

14.
Temperature requirements for growth, reproduction and formation of macrothalli of a day-neutral strain ofScytosiphon lomentaria from the Gulf of Thessaloniki were experimentally determined and correlated with the geographic distribution in the North Atlantic Ocean. The microthallus grew in a wider temperature interval and better at higher temperatures than did the macrothallus. Germlings acclimated to 5 or 15°C grew sufficiently (>20% of maximum rate) and developed into macrothalli at 5–25°C and 5–27°C. Macrothalli acclimated to 10 or 15°C grew sufficiently at 5–20°C. Macrothalli acclimated to 15°C survived at −1°C and reproduced at 5 to 23°C. Regardless of the acclimation temperature, germlings and macrothalli grew optimally (>80% of maximum rate) at 15–25°C and at 10–15°C. The experimental data explain only the southern distribution boundary ofScytosiphon in the North Atlantic. This boundary is composite in nature: on the European coasts it is a growth boundary, whereas on the American coasts it is a lethal one.  相似文献   

15.
Temperature tolerances were determined for Caribbean isolates (total 31) of seaureds belonging to three distributional groups: 1) species confined to the tropical western Atlantic (Botryocladia spinulifera, Chamaedoris peniculum, Cladophoropsis sundanensis, Dictyopteris justii, Dictyurus occidentalis, Haloplegma duperreyi, and Heterosiphonia gibbesii); 2) amphi-Atlantic species with a (sub)tropical distribution that have their northern boundary in the eastern Atlantic at the tropical Cape Verde Islands (Bryothamnion triquetrum and Ceramium nitens) or the subtropical Canary Islands (Ceratodictyon intricatum, Coelothrix irregularis, Dictyopteris delicatula, Ernodesmis verticillata, and Lophocladia trichoclados; and 3) species with an am-phi-Atlantic tropical to warm-temperate distribution also occurring in the Mediterranean (Cladophoropsis membranacea, Digenea simplex, Microdictyon boergesenii, and Wurdemannia miniata). For some isolates, growth response curves and temperature requirements for reproduction were also determined. Growth occurred in the range (18)20–30° C with optimum growth rates at 25°–30°C, irrespective of distribution group. Reproduction generally occurred at (20)25°–30° C although there were some exceptions. Species were extremely stenothermal, with those restricted to the western Atlantic surviving a total range of only 10/13° C (between 18/20° and 30/33° C). Tolerance to high temperatures was correlated with vertical position in the iniertidal/subtidal zone rather than biogeography grouping. Species restricted to the subtidal were the least tolerant, with permanent survival at 30° C but not at 33°C. Tolerance to low temperatures was not different in subtidal and intertidal species but was significantly better in am phi-Atlantic than in western Atlantic species. In the former group, damage occurred at 15°–18° C but in the latter group at 18°-20° C. We propose that these differences in low-temperature tolerances in Caribbean populations of species from different distribution groups reflect adaptations to glacial cold-stress in the tropical eastern Atlantic and subsequent trans-Atlantic dispersal.  相似文献   

16.
Understanding the evolution of growth rate requires knowledge of the physiology of growth. This study explored the physiological basis of countergradient variation (CnGV) in somatic growth across latitudinal populations of the Atlantic silverside, Menidia menidia. Energetics of northern (Nova Scotia, Canada) and southern (South Carolina, USA) genotypes were compared across resource levels, temperatures, and fish sizes to identify trade-offs to rapid growth. Offered unlimited resources, genotypes differed in both energy acquisition and allocation. Food consumption, growth, and efficiency of northern genotypes were consistently higher than in southern genotypes, across temperatures and body sizes. Feeding metabolism (specific dynamic action; SDA) was proportional to meal size, differing between genotypes to the extent that food consumption differed. Given limited resources, northern and southern genotypes displayed similar growth, efficiency, routine activity, and SDA across temperatures and fish sizes. Routine metabolism was equal at 17°C and 22°C, yet was significantly higher in northern fish at 28°C. Growth rates in M. menidia do not appear to trade off across environments or body sizes, i.e., at no temperature, ration, or size do southern fish outgrow northern conspecifics. Nor does submaximal growth result from increased costs of maintenance, tissue synthesis, or routine activity. Based on our findings, we propose that CnGV consumption and growth in M. menidia likely result from trade-offs with other energetic components, namely sustained and burst swimming. Received: 26 January 1999 / Accepted: 14 September 1999  相似文献   

17.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

18.
Life history and prey consumption of the predatory stigmaeid mite Agistemus olivi Romeih, as affected by feeding on the motile stages of the olive bud mite Aceria oleae Nalepa and the olive rust mite Tegolophus hassani Keifer (Acari : Eriophyidae), has been studied for the first time at different temperatures and 70–75% r.h. A greater capability was shown for consuming the olive bud mite than the olive rust mite and the former prey relatively induced more fecundity. The rise of different temperatures from 20°C to 25°C and 30°C shortened development and increased reproduction and prey consumption. The maximum reproduction (6.92 and 6.08 eggs ♀ day) was recorded at the higher temperature, while the minimum reproduction (1.50 and 1.30 eggs ♀ day) was observed for A. oleae and T. hassani, respectively.  相似文献   

19.
We analyzed the feeding preference of Cnesterodon decemmaculatus, a small‐bodied poecilid native from the Rio de la Plata and proximate Atlantic Basins in South America. This species has a wide distribution in Uruguayan water bodies but its effectiveness as a predator of mosquito larvae has not been tested. In laboratory trials, five aquatic invertebrates were offered simultaneously as potential prey to fish: Daphnia pulex (Cladocera), copepods, two different instars of mosquito larvae (Culex pipiens), and the 4th instar of Chironomidae larvae. Preference was measured by the Chesson's electivity index (α). In order to determine differences in prey preference according to fish size, individuals ranging from 9.5 mm to 35.3 mm were classified in three different body size classes: small, medium, and large. Small fish showed preference for copepods, while medium‐sized fish preferred the smallest mosquito larvae instars and Chironomidae larvae. We conclude that C. decemmaculatus is a zooplankton facultative‐feeder fish that prefers large‐bodied zooplankton but is a weak predator of mosquito larvae. Thus, the introduction of C. decemmaculatus as a biological‐control agent in natural environments is not an effective strategy.  相似文献   

20.
Behavioural changes that occur during the parr–smolt transformation were investigated in juvenile coho salmon Oncorhynchus kisutch. Fish from two populations were examined from the Fraser River catchment in British Columbia, Canada; a short and a long-distance migrating population. Fish showed a significant decrease in condition factor and significant increase in gill Na+K+-ATPase activity during the spring indicating that they became competent smolts, but no difference between populations. Temperature preference trials were conducted using a shuttlebox system throughout the spring. Mean temperature preference did not differ between the two populations, but preferred temperature decreased with development from 16.5 ± 0.3°C for parr to 15.5 ± 0.4°C for smolts. Mean swimming velocity was also greater in smolts than parr, but there was no difference between the two populations. The preference for warmer water temperature observed for parr in early spring may be advantageous for stimulating smolt development. Preference for slightly cooler temperatures observed for smolts would sustain elevated seawater tolerance during the smolt window by a short time and may ensure successful transition to the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号