首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

2.
3.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

4.
Fusion of vesicular stomatitis virus (VSV) with Vero cells was measured after exposure of the virus to low pH under a variety of experimental conditions. The method of relief of fluorescence self-quenching of the probe octadecylrhodamine was used to monitor fusion. Incubation of the virus at pH 5.5 prior to binding to cells led to significant enhancement of fusion at the plasma membrane, whereas fusion via the endocytic pathway was inhibited. Fusion of pH 5.5-pretreated VSV showed a similar pH threshold for fusion as nontreated virus, and it was blocked by antibody to VSV G protein. Activation of VSV by pretreatment at low pH was only slightly dependent on temperature. In contrast, when VSV was first bound to target cells and subsequently exposed at 4 degrees C to the low pH, activation of the fusion process did not occur. The pH 5.5-mediated activation of VSV could be reversed by returning the pH to neutral in the absence of target membranes. The low pH pretreatment also led to aggregation of virus; large aggregates could be pelleted by low speed centrifugation and only the effects of the supernatant, which consist of single virions and/or microaggregates, were considered. The data were analyzed in the framework of an allosteric model according to which viral spike glycoproteins undergo a pH-dependent conformational transition to an active (fusion-competent) state. Based on that analysis we conclude that the conformational transition to the active state is rate-limiting for fusion and that the viral spike glycoproteins are fusion-competent only in their protonated form.  相似文献   

5.
6.
Interferon production in mice by vesicular stomatitis virus.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

7.
Inhibition of vesicular stomatitis virus infection by nitric oxide.   总被引:19,自引:5,他引:14       下载免费PDF全文
Z Bi  C S Reiss 《Journal of virology》1995,69(4):2208-2213
Inhibitory effects of nitric oxide (NO) on vesicular stomatitis virus (VSV) infection were investigated by using a VSV-susceptible mouse neuroblastoma cell line, NB41A3. Productive VSV infection of NB41A3 cells was significantly inhibited by an organic NO donor, S-nitro-N-acetylpenicillamine (SNAP), while the control compound N-acetylpenicillamine (NAP) had no effect. Survival rate of VSV-infected cells was greatly increased by the treatment with SNAP, while the NAP treatment did not have any effect. Adding SNAP 30 min prior to infection resulted in complete inhibition of viral production when a low multiplicity of infection (MOI) was used. Substantial inhibition of viral production was also obtained with treating cells 6 h earlier before infection with a higher MOI. Activating the neuronal NO synthase by treating cells with N-methyl-D-aspartate (NMDA) led to significant inhibition of viral production by cells infected at the three doses of virus tested (MOIs of 0.1, 1, and 5). The inhibitory effect of NMDA on viral infection was totally blocked by the NO synthase inhibitor N-methyl-L-arginine. However, adding hemoglobin, a strong NO-binding protein and thus an inactivator of NO activity, did not reverse the NMDA-induced inhibition of viral production, suggesting that NO might exert its antiviral effects inside the NO-producing cells. Collectively, these data support the anti-VSV effects of NO, which might be one of the important factors of natural immunity in controlling the initial stages of VSV infection in the central nervous system.  相似文献   

8.
9.
10.
11.
12.
Stereo images of vesicular stomatitis virus assembly.   总被引:14,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

13.
Glycosylation sites of vesicular stomatitis virus glycoprotein.   总被引:16,自引:8,他引:8       下载免费PDF全文
Detailed analysis on DEAE-Sephadex of the tryptic digestion products of the glycoprotein from vesicular stomatitis virus grown in HeLa suspension cultures revealed the presence of two major and several minor sugar-labeled species. The minor tryptic glycopeptides were converted to one of the two major glycopeptide species by treatment with neuraminidase. Thus, vesicular stomatitis virus glycoprotein contains only two oligosaccharide side chains that are heterogeneous in their sialic acid content.  相似文献   

14.
15.
16.
17.
Biophysical studies of vesicular stomatitis virus   总被引:24,自引:0,他引:24       下载免费PDF全文
McCombs, Robert M. (Baylor University College of Medicine, Houston, Tex.), Matilda Benyesh-Melnick, and Jean P. Brunschwig. Biophysical studies of vesicular stomatitis virus: J. Bacteriol. 91:803-812. 1966.-The infectivity and morphology of vesicular stomatitis virus (VSV) were studied after density gradient centrifugation in cesium chloride (CsCI), potassium tartrate (KT), and sucrose. Centrifugation in CsCl revealed two equally infectious bands corresponding to densities of 1.19 and 1.22 g/ml, and a third (density, 1.26 g/ml) band of low infectivity. Two bands (densities of 1.16 and 1.18 g/ml) were observed in the KT gradient, in which the lighter band contained most of the infectivity. Centrifugation in sucrose resulted in a single broad infectious band (density, 1.16 g/ml). The typical rod-shaped VSV particles were found mainly in the lighter bands obtained in CsCl (1.19 g/ml) and KT (1.16 g/ml) and in the single sucrose gradient band (1.16 g/ml). Bent particles equally as infectious as the rod-shaped particles were a constant finding in the CsCl preparations, and were observed mainly in the second band (density, 1.19 g). Numerous strands 15mmu wide were found in the third CsCl (density, 1.26 g/ml) and the second KT (1.18 g/ml) bands. Similar strands could be liberated from VSV particles after treatment with deoxycholate. Internal transverse striations were found to be a regular feature of VSV particles examined with the pseudoreplication negative-staining technique. For crude virus stocks, the physical particle-to-infectivity ratio ranged from 73 to 194. Several morphological similarities between VSV and myxoviruses were observed, including 10 mmu surface projections, pleomorphic morphological forms, and 15 mmu seemingly nucleoprotein strands.  相似文献   

18.
19.
Vesicular stomatitis virus was disrupted by a combination of freezing and thawing, osmotic shock, and sonic treatment. Subviral components were separated by isopycnic centrifugation. The low-density, lipid-rich fractions were pooled and shown to contain primarily viral glycoprotein. Further purification of this material resulted in the isolation of a preparation of vesicles which contained only the G protein and the same phospholipids as in the intact virions and exhibited spikelike structures similar to those on intact vesicular stomatitis virions. We conclude that we have isolated fragments of native vesicular stomatitis virus envelopes.  相似文献   

20.
Structural proteins of temperature-sensitive (ts) mutants of vesicular stomatitis virus, Indiana serotype, were compared with those of wild-type and revertant virions by electrophoresis on polyacrylamide gels of partial digests with Staphylococcus aureus V8 protease. Mutants of complementation groups III (tsG31 and tsG33), II (tsG22), and IV (tsG41) differed from the wild-type virion in peptide profiles of their M, NS, and N proteins, respectively. The differences were only detectable over a narrow range of enzyme-substrate ratios and were due to peptides transiently generated during incomplete digestion. Proteins of revertants to tsG31, tsG22, and tsG41 exhibited the wild-type virion peptide pattern, indicating that reversion had restored their original conformation. However, in the case of tsG22, the NS peptide profile reverted to the wild-type phenotype only partially, suggesting that a silent mutation might have taken place during either the original chemical mutagenesis or the following repeated laboratory passages. The apparent alteration in protein conformation and its restoration upon reversion of the mutants indicated that the lesions of groups III and IV were located in the M and N proteins, respectively. Moreover, for the first time, the site of mutation of group II could be positively identified as the NS protein cistron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号