首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Madin-Darby canine kidney (MDCK) cells have been extensively used as a model for the study of epithelial polarization. The contacts between the cell and extra-cellular matrix (ECM) provide a signal for the polarization of apical membrane markers. In order to study the molecular basis of these contacts, MDCK cells extracts in Triton X-100 were affinity-purified on laminin, yielding polypeptides of 100-110 and 36 kDa, but only the second one could be enzymatically iodinated from the cell surface. This protein was also recognized by an antibody against the 37/67-kDa laminin/elastin family of proteins. Different polypeptides were purified by the same method on type I collagen. An antibody developed against the polypeptides purified on laminin recognized also a 67-kDa protein, blocked 125I-laminin binding to a population of high affinity (1.5 nM KD) binding sites and caused a significant decrease in cell attachment and spreading to laminin or endogenous ECM. This antibody did not interfere with MDCK cell attachment to fibronectin or collagen matrices, but still impaired cell spreading. An apical MDCK plasma membrane protein (184 kDa), fully polarized in untreated cells, was partially mispolarized after treatment with anti-36 kDa antibody. These results are consistent with a model of various ECM receptors operating together in these cells, and show an important role of a non-integrin 36-kDa laminin binding protein related to the 67-kDa laminin receptor family in cell attachment, spreading and polarization.  相似文献   

2.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

3.
Topography of human placental receptors for epidermal growth factor   总被引:1,自引:0,他引:1  
These studies were undertaken to determine whether term human placental microvillus plasma membranes, which are exposed to maternal blood, and basolateral plasma membranes, which are in close proximity to fetal blood capillaries, contain receptors for epidermal growth factor (EGF). These two highly purified membranes bound 125I-EGF with similar affinity (apparent dissociation constants, 0.07-0.12 nM, but the total number of available receptors was greater in microvillus (8.2 pmol/mg protein) compared to basolateral (4.9 pmol/mg protein) plasma membranes. Detailed characterization of 125I-EGF binding to these membranes revealed numerous similarities as well as differences. The two membranes contained two major (155 and 140 kDa) and at least three minor (115, 175, and 210 kDa) specific 125I-EGF binding proteins. The 115-kDa protein was only found in basolateral plasma membranes. The 155-kDa protein was predominantly labeled in microvillus, whereas the 140-kDa protein was labeled predominantly in basolateral plasma membranes. The addition of protease inhibitors did not alter the multiple 125I-EGF binding proteins pattern found in these membranes. EGF stimulated phosphorylation of 140- and 155-kDa proteins in both microvillus and basolateral plasma membranes. However, the 155-kDa protein was phosphorylated to a greater extent in microvillus, whereas both 140- and 155-kDa proteins were phosphorylated equally in basolateral plasma membranes. Light and electron microscope autoradiographic studies revealed that 125I-EGF preferentially associated with microvillus plasma membranes. The data demonstrates the presence of EGF receptors in outer cell membranes of syncytiotrophoblasts and suggests that maternal EGF may influence syncytiotrophoblast function by binding to receptors in microvillus plasma membranes, while fetal EGF may also influence syncytiotrophoblast function but via receptors in basolateral plasma membranes.  相似文献   

4.
Rat pheochromocytoma PC12 cells respond to the binding of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) by extending neurites in a manner resembling sympathetic neurons. This response requires cell attachment to an appropriate substratum (Fujii et al., J. Neurosci., 2:1157, 1982); attachment factors which function in this capacity include the adhesive proteins fibronectin and laminin. Incubating PC12 cells with a polyclonal antiserum directed against a putative 140-kDa fibroblast cell surface fibronectin receptor (anti-gp140) perturbed spreading but not attachment of the cells to fibronectin and laminin substrates. However, in the presence of anti-gp 140 or its Fab fragments, NGF-stimulated neurite outgrowth was dramatically reduced. The antibody also caused a retraction of previously extended neurites. SDS-PAGE analysis of immunoprecipitates of PC12 cells surface labeled with 125I identified a prominent 120-140-kDa band, suggesting that the site of anti-gp140 action in PC12 cells is also through a fibronectin receptor.  相似文献   

5.
Iodinated interleukin-3 (IL-3) can be covalently cross-linked to three specific surface glycoproteins with net molecular masses of 170, 140, and 65-70 kDa under conditions in which ligand internalization and degradation do not occur. These three proteins plus two additional non-ligand-binding proteins of 90 and 55 kDa can be purified by IL-3 affinity chromatography. Comparative two-dimensional analysis of the tryptic digests of these five proteins indicates that the ligand-binding proteins are highly related at the peptide level. Incubation of cells with 125I-IL-3 at 37 degrees C results in rapid time- and energy-dependent internalization and degradation of ligand. Under these conditions only the 140- and 65-70-kDa binding proteins, which can recycle to the surface after internalization, can be identified. The lability of the 170-kDa protein indicates that it may not recycle. Thus, an energy-dependent mechanism is responsible for internalization and may be necessary for any potential interconversion of the higher 170- or 140-kDa proteins to the lower 140- and/or 65-70-kDa binding proteins.  相似文献   

6.
We used affinity chromatography to isolate a specific laminin-binding protein from murine fibrosarcoma cells. These cells bind exogenous laminin to their surface with high affinity (Kd = 2 X 10(-9)M for laminin) with approximately 5 X 10(4) sites per cell. Laminin affinity chromatography of [35S]methionine-labeled cell extracts produced two distinct proteins. One was identified as Type IV (basement membrane) collagen based on its migration pattern on SDS gels and bacterial collagenase sensitivity. The other protein, which migrates as a single band or closely spaced doublet on reduced SDS gels, has a reduced molecular weight of 69,000. Using a nitrocellulose filter disk assay, we found that the latter protein specifically bound 125I-laminin with the same high affinity (Kd = 2 X 10(-9)M for laminin) as did intact fibrosarcoma cells. By iodinating intact cells, we demonstrated that this laminin-binding protein is on the cell surface. We conclude that this protein with reduced molecular weight of 69,000 is a subunit or component of a larger cell surface receptor protein for laminin in this fibrosarcoma model. This laminin receptor may mediate the interaction of the cell with its extracellular matrix.  相似文献   

7.
8.
We have isolated a 105-kDa membrane glycoprotein expressed by subsets of developing chick neurons. This glycoprotein, identified by the JC7 monoclonal antibody, is present on the surface of axons and cell bodies of developing spinal motor neurons, dorsal root ganglion sensory neurons, sympathetic and parasympathetic neurons, and a small subset of brain neurons. Late in development the JC7 antigen is expressed at high levels on CNS nonneuronal glial-like cells. When attached to latex beads this glycoprotein can mediate homophilic adhesion and when used as a culture substrate stimulates a highly branched pattern of neurite outgrowth from dorsal root ganglion explants. The JC7 antigen appears to be identical to the SC1, BEN, and DM antigens. Its limited distribution, adhesive qualities, and ability to stimulate neurite outgrowth suggest it may play a role in the selective growth of neural processes during development.  相似文献   

9.
Intracellular localization of the P21rho proteins   总被引:21,自引:0,他引:21       下载免费PDF全文
We have surveyed the proteins expressed at the surface of different primary neurons as a first step in elucidating how axons regulate their ensheathment by glial cells. We characterized the surface proteins of dorsal root ganglion neurons, superior cervical ganglion neurons, and cerebellar granule cells which are myelinated, ensheathed but unmyelinated, and unensheathed, respectively. We found that the most abundant proteins are common to all three types of neurons. Reproducible differences in the composition of the integral membrane proteins (enriched by partitioning into a Triton X-114 detergent phase) were detected. These differences were most striking when the expression of glycosylphosphatidyl-inositol (GPI)-anchored membrane proteins by these different neurons was compared. Variations in the relative abundance and degree of glycosylation of several well known GPI-anchored proteins, including Thy-1, F3/F11, and the 120-kD form of the neural cell adhesion molecule (N-CAM), and an abundant 60-kD GPI-linked protein were observed. In addition, we have identified several potentially novel GPI-anchored glycoproteins on each class of neurons. These include a protein that is present only on superior cervical ganglion neurons and is 90 kD; an abundant protein of 69 kD that is essentially restricted in its expression to dorsal root ganglion neurons; and proteins of 38 and 31 kD that are expressed only on granule cell neurons. Finally, the relative abundance of the three major isoforms of N-CAM was found to vary significantly between these different primary neurons. These results are the first demonstration that nerve fibers with diverse ensheathment fates differ significantly in the composition of their surface proteins and suggest an important role for GPI-anchored proteins in generating diversity of the neuronal cell surface.  相似文献   

10.
Plant cells in culture secrete a sulfated peptide named phytosulfokine-alpha (PSK-alpha), and this peptide induces the cell division and/or cell differentiation by means of specific high and low affinity receptors. Putative receptor proteins for this autocrine type growth factor were identified by photoaffinity labeling of plasma membrane fractions derived from rice suspension cells. Incubation of membranes with a photoactivable (125)I-labeled PSK-alpha analog, [N(epsilon)-(4-azidosalicyl)Lys(5)]PSK-alpha (AS-PSK-alpha), followed by UV irradiation resulted in specific labeling of 120- and 160-kDa bands in SDS-polyacrylamide gel electrophoresis. The labeling of both bands was completely inhibited by unlabeled PSK-alpha and partially decreased by PSK-alpha analogs possessing moderate binding activities. In contrast, PSK-alpha analogs that have no biological activity showed no competition for (125)I-AS-PSK-alpha binding, confirming the specificity of binding proteins. Analysis of the affinity of (125)I incorporation into the protein by ligand saturation experiments gave apparent K(d) values of 5.0 nm for the 120-kDa band and 5.4 nm for the 160-kDa band, suggesting that both proteins correspond to the high affinity binding site. Treatment of (125)I-AS-PSK-alpha cross-linked proteins with peptide N-glycosidase F demonstrated that both proteins contained approximately 10 kDa of N-linked oligosaccharides. Specific cross-linking of (125)I-AS-PSK-alpha was also observed by using plasma membranes derived from carrot and tobacco cells, indicating the widespread occurrence of the binding proteins. Together, these data suggest that the 120- and 160-kDa proteins are PSK-alpha receptors that mediate the biological activities of PSK-alpha.  相似文献   

11.
To gain insight into the developmental program of nerve growth factor (NGF) receptor expression, the binding of [125I] beta NGF to frozen chick sections was investigated autorradiographically between embryonic day 3 (E3) and post-hatching day 3. Strong NGF receptor expression was observed as early as E4, throughout embryonic development and in the post-hatching period at the classical NGF target sites: the paravertebral sensory and sympathetic ganglia, the paraaortal sympathetic ganglia as well as the cranial sensory ganglia with neurons of neural crest origin and their respective nerves. Only weak [125I] beta NGF binding was observed during a restricted time span in the parasympathetic ciliary ganglion. Clear differences were observed in the intensity and in the developmental time course of [125I] beta NGF binding to the dorsomedial and ventrolateral aspects of the dorsal root ganglia. NGF receptors were also found to be expressed on central axons of the dorsal root entry zone and the dorsal tract in the spinal cord. A transient expression of specific NGF binding sites of the same high affinity as measured at the classical NGF targets, was detected in the lateral motor column and in muscle at the time of motoneuron synapse formation and elimination.  相似文献   

12.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

13.
Abstract: The protein kinase inhibitor K-252a has been shown to promote cholinergic activity in cultures of rat spinal cord and neuronal survival in chick dorsal root ganglion cultures. To determine the mechanism by which K-252a acts as a neurotrophic factor, we examined the effects of this molecule on a human neuroblastoma cell line, SH-SY5Y. K-252a induced neurite outgrowth in a dose-dependent manner. Coincident with neurite outgrowth was the early tyrosine phosphorylation of 125- and 140-kDa proteins. The phosphorylation events were independent of protein kinase C inhibition because down-regulation of protein kinase C by long-term treatment with phorbol ester did not prevent K-252a-induced tyrosine phosphorylation. Similarly, the protein kinase C inhibitors H7, GF-109203X, and calphostin C did not induce the phosphorylation. We have identified one of the phosphosubstrates as the pp125 focal adhesion protein tyrosine kinase (Fak). Induction of phosphorylation coincided with increased Fak activity and appeared to be independent of ligand/integrin interaction. The induction of Fak phosphorylation by K-252a was also observed in LA-N-5 cells and primary cultures of rat embryonic striatal cells but not in PC12 cells. The protein kinase C-independent induction of tyrosine phosphorylation and the identification of Fak as a substrate of K-252a-induced tyrosine kinase activity suggest that this compound mediates neurotrophic effects through a novel signaling pathway.  相似文献   

14.
Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells.  相似文献   

15.
The goal of this investigation is to identify molecules that mediate embryonic cardiac myocyte adhesion during chick cardiac morphogenesis. The assay used employs culturing embryonic myocytes on substrata containing embryonic heart proteins separated by molecular weight. This assay shows that embryonic myocytes from 10- to 14-day-old embryos will bind to 140,000 and 128,000 Da proteins present in embryonic hearts and do not require Mg2+ or Ca2+ for adhesion. Myocytes from embryos younger than 10 days or older than 14 days display little or no binding. Embryonic heart fibroblasts collected at these same ages do not bind to these proteins. The 140- and 128-kDa proteins were found to copurify in extraction procedures for procollagens. Amino acid analysis shows that both proteins contain high glycine and hydroxyproline, indicating that they are collagens. However, glycine and imino acid levels are low relative to other known collagens, indicating a nonhelical domain present in each molecule and most closely resembled levels present in procollagens. Immunoblots show that antisera to chick collagen type I recognizes the 128-kDa protein while anti-collagen type III recognizes the 140-kDa protein. Monoclonal antibodies to the amino terminal propeptide of collagen type I recognize the 128-kDa protein in immunoblotting procedures. Embryonic chick myocytes bind to 140/128 kDa proteins present in extracts of sympathetic trunk, although they do not bind to 140/128 kDa proteins in embryonic tendon. The findings thereby indicate that forms of type III and type I collagens in embryonic heart support direct adhesion of embryonic myocytes for a restricted period of cardiac myogenesis and that these proteins differ from collagen types I and III present in other tissues and from fully processed collagen types I and III.  相似文献   

16.
Nogo-A limits axon regeneration and functional recovery after central nervous system injury in adult mammals. Three regions of Nogo-A (Nogo-A-24, Nogo-66, and Nogo-C39) interact with the neuronal Nogo-66 receptor 1 (NgR1). Nogo-66 also interacts with a structurally unrelated cell surface receptor, paired immunoglobulin-like receptor (PirB). We show here that the other two NgR1-interacting domains, Nogo-A-24 and Nogo-C39, also bind to PirB with high affinity. A purified 22-kDa protein containing all three NgR1- and PirB-interacting domains (Nogo-22) is a substantially more potent growth cone-collapsing molecule than Nogo-66 for chick dorsal root ganglion neurons and mature cortical neurons. Moreover, Nogo-22 inhibits axon regeneration of mature cortical neurons in vitro more potently than does Nogo-66. Although all three NgR1-interacting domains of Nogo-A also interact with PirB, expression of PirB in mature cortical cultures is nearly undetectable. Consistent with a relatively minor role for PirB in mature cortical neurons, Nogo-22 inhibition of axon regeneration is abolished by genetic deletion of NgR1. Thus, NgR1 is the predominant receptor for Nogo-22 in regenerating cortical neurons.  相似文献   

17.
In this report we describe the purification of the murine interleukin 3 receptor (mIL-3R) to apparent homogeneity using a two-step procedure involving biotinylated mIL-3 (B-mIL-3) and affinity binding to immobilized antiphosphotyrosine and streptavidin agarose (SA). Purification was monitored using an assay for detergent solubilized-mIL-3Rs that utilized unglycosylated 125I-mIL-3 and concanavalin A (ConA)-Sepharose beads. The final material consisted of a 140-kDa tyrosine and serine phosphorylated protein that was greater than 98% pure as assessed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of either [35S]methionine-labeled, silver-stained, or radioiodinated preparations. Characterization of the purified receptor revealed that it migrated identically under reducing and nonreducing conditions in SDS gels, possessed 10 kDa of N-linked carbohydrate, and was cleaved upon storage at 4 degrees C to a 70-kDa form. These properties suggested that the purified mIL-3R was identical to that identified by cross-linking studies. The KD of the purified receptor was 1-5 nM, similar to estimates obtained using intact normal mouse bone marrow cells and mIL-3-dependent cell lines. The two-step purification procedure also isolated a 120-kDa serine phosphorylated but nontyrosine phosphorylated mIL-3R species. Apart from phosphorylation differences, the 140- and 120-kDa species were apparently identical, yielding, after alkaline phosphatase treatment, the same molecular mass on SDS gels and similar chymotryptic peptide maps. Amino acid sequences and composition data obtained from the more abundant and more stable serine phosphorylated 120-kDa mIL-3R, further purified by SDS-polyacrylamide gel electrophoresis, suggested that the purified mIL-3R may be identical to the predicted sequence of the recently isolated cDNA clone AIC2A. This was further suggested by comparing chymotryptic maps of the 120-kDa mIL-3R with the Aic2A protein and using antibodies corresponding to the amino and carboxyl termini of the AIC2A cDNA product. However, the Aic2A protein, when expressed on the surface of COS or 3T3 cells or following detergent solubilization and partial purification with biotinylated mIL-3 and SA, displayed a substantially lower affinity for mIL-3.  相似文献   

18.
Regulators of G-protein signaling (RGS) proteins constitute a large family of GTPase-activating proteins for heterotrimeric G proteins. More than 20 RGS genes have been identified in mammals. One of these, the Galpha-interacting protein (GAIP), preferentially interacts with members of the G(i)/G(o) subfamily of G proteins in mammalian cells, but its selectivity among members of this subfamily in vitro is limited. Here we report the cloning and functional characterization of a unique cDNA isoform of GAIP, derived from embryonic chicken dorsal root ganglion neurons. Chick GAIP is composed of 199 amino acids, organized into a conserved RGS domain (85% identical to human GAIP), and a unique, short N terminus (only 41% identical, 50% homologous to known mammalian orthologues). Consistent with this unique primary structure, chick GAIP has physiological properties that distinguish it from mammalian GAIPs. We have explored the selectivity of chick GAIP in electrophysiological assays of two G(o)-mediated forms of Ca(2+) channel inhibition produced by gamma-aminobutyric acid in chick dorsal root ganglion neurons, voltage-independent inhibition (mediated by G(o)alpha) and voltage-dependent inhibition (mediated by G(o)betagamma). Dialyzing recombinant chick GAIP in these cells selectively reduced voltage-independent inhibition without affecting voltage-dependent inhibition. Mammalian GAIP, tested under identical conditions in previous studies, demonstrated no selectivity between these two inhibitory processes; thus, our results suggest that the functional specificity of chick GAIP is likely to be determined by its unique N terminus.  相似文献   

19.
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.  相似文献   

20.
Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein   总被引:11,自引:0,他引:11  
Elastin binding proteins from plasma membranes of elastin-producing cells were isolated by affinity chromatography on immobilized elastin peptides. Three proteins of 67, 61, and 55 kDa were released from the elastin resin by guanidine/detergent, soluble elastin peptides, synthetic peptide VGVAPG, or galactoside sugars, but not by synthetic RGD-containing peptide or sugars not related to galactose. All three proteins incorporated radiolabel upon extracellular iodination and contained [3H]leucine following metabolic labeling, confirming that each is a synthetic product of the cell. The 67-kDa protein could be released from the cell surface with lactose-containing buffers, whereas solubilization of the 61- and 55-kDa components required the presence of detergent. Although all three proteins were retained on elastin affinity columns, the 61- and 55-kDa components were retained only in the presence of 67-kDa protein, suggesting that the 67-kDa protein binds elastin and the 61- and 55-kDa proteins bind to the 67-kDa protein. We propose that the 67-, 61-, and 55-kDa proteins constitute an elastin-receptor complex that forms a transmembrane link between the extracellular matrix and the intracellular compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号