首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neurohumoral pathways mediating intracisternal TRH-induced stimulation of gastric acid secretion were investigated. In urethane-anesthetized rats, with gastric and intrajugular cannulas, TRH or the analog [N-Val2]-TRH (1 microgram) injected intracisternally increased gastric acid output for 90 min. Serum gastrin levels were not elevated significantly. Under these conditions the TRH analog, unlike TRH, was devoid of thyrotropin-releasing activity as measured by serum TSH levels. In pylorus-ligated rats, gastrin values were not modified 2 h after peptide injection whereas gastric acid output was enhanced. TRH (0.1-1 micrograms) stimulated vagal efferent discharge, recorded from a multifiber preparation of the cervical vagus in urethane-anesthetized rats and the response was dose-dependent. The time course of vagal activation was well correlated with the time profile of gastric stimulation measured every 2 min. These results demonstrated that gastric acid secretory stimulation elicited by intracisternal TRH is not related to changes in circulating levels of gastrin or TSH but is mediated by the activation of efferent vagal pathways that stimulated parietal cell secretion.  相似文献   

2.
Intracisternal injection of thyrotropin-releasing hormone (TRH)-Gly (pGlu-His-Pro-Gly) produced a dose-dependent (1-100 micrograms) stimulation of gastric acid secretion in urethane-anesthetized rats implanted acutely with a gastric fistula. The peak response occurred 20-30 min after intracisternal injection and lasted for more than 2 h. Intravenous injection of TRH-Gly (100 micrograms) did not modify gastric acid secretion. Following intracisternal injection of TRH-Gly, a peak elevation of both TRH-Gly and TRH levels is observed in the cerebrospinal fluid (CSF) within 15 min. Thereafter, TRH values are returned to basal levels at 75 min after the injection, whereas TRH-Gly concentrations remain significantly elevated throughout the 2-h period of measurement. Compartmental analysis revealed that CSF conversion of TRH-Gly to TRH was only 0.0072%/min. Medullary coronal sections containing the dorsal vagal complex and the raphé nucleus revealed increased content of TRH-Gly, but not TRH, 40 min after administration of TRH-Gly at an intracisternal dose effective in stimulating gastric acid secretion (100 micrograms). In addition, TRH but not TRH-Gly (10(-7)-10(-5) M) displaced [3H]MeTRH binding from rat medullary blocks containing the dorsal vagal complex. These data suggest that the intracisternal TRH-Gly-induced stimulation of gastric acid secretion is not related to its conversion to TRH in the CSF, or direct activation of TRH receptors in the medulla. The acid secretory response of TRH-Gly may be due to the formation of TRH at the active brain sites, or alternatively to activation of its own specific receptors.  相似文献   

3.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

4.
R L Stephens  P Horner  G Drapeau 《Peptides》1991,12(3):665-667
Intracisternal injection of 19 pmoles of bombesin in light-ether-anesthetized rats, five minutes after intracisternal vehicle, produced a 75% and 63% inhibition in gastric acid output and concentration, respectively, in 2-hour pylorus-ligated rats. Pretreatment of rats with the characterized peripheral bombesin antagonist N-acetyl-GRP(20-26)-O-CH3 (1 nmole) reversed the inhibitory effect of bombesin on gastric acid output and concentration. In contrast, the related bombesin antagonist N-acetyl-GRP-O-CH2-CH3 (1 nmole) was ineffective in this system. In urethane-anesthetized, acute gastric fistula rats infused with pentagastrin, intracisternal N-acetyl-GRP(20-26)-O-CH3 protected against the inhibition in gastric acid output produced by intracisternal bombesin (19 pmoles). Thus the recently characterized peripheral bombesin antagonist N-acetyl-GRP(20-26)-O-CH3 also appears to be effective in antagonizing central bombesin-induced inhibition in gastric acid secretion in two models. This represents a first report of a synthetic bombesin antagonist effective in reversing central bombesin-induced effects on gastric function.  相似文献   

5.
The site of action of peripheral peptide YY (PYY)-induced inhibition of vagally stimulated gastric acid secretion was studied using immunoneutralization with PYY antibody in urethan-anesthetized rats. Gastric acid secretion (59+/-7 micromol/90 min) stimulated by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368 (14 pmol/rat) was dose-dependently inhibited by 52%, 69%, and 83% by intravenous infusion of 0.25, 0.5, and 1.0 nmol. kg(-1) x h(-1) PYY, respectively. PYY or PYY(3-36) (2.4 pmol/rat) injected intracisternally also inhibited the acid response to intracisternal RX-77368 by 73% and 80%, respectively. Intravenous pretreatment with PYY antibody (4.5 mg/rat), which shows a 35% cross-reaction with PYY(3-36) by RIA, completely prevented the inhibitory effect of intravenously infused PYY (1 nmol x kg(-1) x h(-1)). When injected intracisternally, the PYY antibody (280 microg/rat) reversed intracisternal PYY (2.4 pmol)- and intravenous PYY (1 nmol x kg(-1) x h(-1))-induced inhibition of acid response to intracisternal RX-77368 by 64% and 93.5%, respectively. These results provide supporting evidence that peripheral PYY inhibits central vagal stimulation of gastric acid secretion through an action in the brain.  相似文献   

6.
Does gastrin stimulate gastric acid secretion by direct action on oxyntic cells, by releasing histamine, or by being potentiated by histamine? Previous studies in the mouse pointed to gastrin-regulated histamine release. Guinea pig and rat are well known to vary in their sensitivity to histamine. Therefore, the effects of histamine and pentagastrin were compared quantitatively on isolated, lumen-perfused, stomach preparations from these species in the absence and presence of histamine H2-receptor blockade. The loss of potency of histamine in the rat was mirrored by a loss of potency of pentagastrin consistent with the idea that pentagastrin acts by releasing histamine. In the rat, a well-defined pentagastrin curve was obtained in the presence of histamine H2-receptor block as though pentagastrin acts both directly on the oxyntic cell and indirectly by releasing histamine. It was not necessary to invoke a potentiating interaction between histamine and pentagastrin at the oxyntic cell; the two effects appeared simply to add. Potentiation was observed, however, between other combinations of stimuli, for example, between vagal nerve and pentagastrin stimulation. The physiological consequences of these results are discussed.  相似文献   

7.
Somatostatin-like immunoreactivity (SLI) was extracted from the canine pancreas and purified by ion exchange, affinity chromatography and gel filtration. The 1600 dalton fraction, which is physicochemically similar to synthetic somatostatin was infused into the peripheral circulation of anesthetized rats and its effect upon gastric acid secretion was compared with that of synthetic somatostatin. Both synthetic somatostatin and pancreatic SLI in a dose of 7–8 μg/kg/h suppressed pentagastrin-stimulated gastric acid secretion. It is concluded that the highly purified 1600 dalton fraction of canine pancreatic SLI, like synthetic somatostatin, can exert biological activity upon the stomach of rats.  相似文献   

8.
Pancreatic secretion in rats is regulated by feedback inhibition of cholecystokinin (CCK) release by proteases in the gut lumen, but little is known about the role of gastric acid in this regulation. This study, carried out on conscious rats with large gastric fistulas (GF) and pancreatic fistulas, shows that diversion of pancreatic juice results in the progressive stimulation of pancreatic secretion only in rats with the GF closed. When the GF was kept open, the diversion resulted in only small increment in pancreatic secretion and this was accompanied by progressive increase in gastric acid outputs. Similar amounts of HCl instilled into the duodenum in rats with the GF open fully reproduced the increase in pancreatic secretion observed after the diversion of pancreatic juice. Pretreatment with omeprazole (15 mumol/kg) to suppress gastric acid secretion or with L-364,718 (5 mumol/kg) to antagonize CCK receptors in the diverted state, resulted in the decline in pancreatic secretion similar to that observed after opening the GF. CCK given s.c. (20-320 pmol/kg) failed to cause any significant rise in the post-diversion pancreatic secretion in rats with the GF closed, but stimulated this secretion dose-dependently when the GF was open. Camostate (6-200 mg/kg) in rats with pancreatic juice returned to the duodenum caused dose-dependent increase in pancreatic secretion, but after opening the GF or after omeprazole this increase was reduced by about 75%. This study provides evidence that gastric acid plays a crucial role in the pancreatic response to diversion of pancreatic juice or inhibition of luminal proteases, and that factors that eliminate gastric acid secretion reduce this response.  相似文献   

9.
Y Goto  Y Tache 《Peptides》1985,6(1):153-156
Intracisternal injection of TRH (1 microgram) under light ether anesthesia induced within 4 hr gastric lesions in 24-hr fasted rats maintained unrestrained at room temperature. Saline, ovine corticotropin-releasing factor (oCRF, 10 micrograms), or human pancreatic growth hormone-releasing factor [hpGRF(1-40), 10 micrograms] tested under the same conditions did not modify the integrity of the gastric mucosa. TRH injected intravenously (100 micrograms/kg) proved to be ineffective. The production of gastric erosions elicited by intracisternal TRH (0.1-1 microgram) or by a stabilized TRH analog, RX 77368 [pGlu-His-(3,3'-dimethyl)-ProNH2, (0.01-0.1 microgram)] was dose-dependent. RX 77368 shows an enhanced potency over TRH. TRH action on gastric mucosa was reversed by atropine, omeprazole and cimetidine. These results demonstrate that TRH, unlike the other hypothalamic releasing factors CRF or GRF, is able to act within the brain to cause the formation of gastric erosions probably through mechanisms involving changes in gastric acid secretion. Intracisternal injection of TRH or its potent analog RX 77368 appears also as a new, simple method to produce centrally mediated experimental gastric erosions in 24 hr-fasted rats.  相似文献   

10.
M W Gunion  Y Tache  J H Walsh  D Novin 《Life sciences》1984,35(17):1769-1775
Intracisternal administration of the tetradecapeptide peptide bombesin suppresses gastric acid release. Other studies have shown that the ventromedial hypothalamus (VMH) may have an inhibitory role in gastric regulation. To determine if the inhibition of gastric acid secretion by intracisternally administered bombesin is mediated by the ventromedial hypothalamus, bombesin was injected intracisternally in rats with ventromedial hypothalamic lesions. Neither anterior nor posterior VMH lesions altered the effects of bombesin on gastric acid, concentration, volume, total output, or on serum gastrin. The bombesin-induced rise in gastric pH was very mildly attenuated by both lesions. The previous finding of enhanced gastric acid secretion after anterior VMH lesions was confirmed. The results suggest that the VMH is not crucial in the bombesin-induced inhibition of acid secretion.  相似文献   

11.
《Journal of Physiology》1997,91(3-5):265-269
The possible effects of TRH administration on different parameters of gastric function were studied in 10 patients with different gastrointestinal complaints. Basal (BAO) and pentagastrin stimulated (6 μg pentagastrin/kg bw sc) maximal (MAO) acid output were determined and serum levels of TSH, total and free thyroxine (T4 and FT4), triiodothyronine (T3) were measured. After determinations of BAO and MAO and the hormones indicated above, one group of patients received a TRH injection (0.2 mg protirelin) intravenously. The second group of patients was injected with atropine (atropinum sulfuricum, 1 mg, iv). At different times following the injections in both groups of patients BAO, MAO and serum levels of TSH, total and free T4, T3, gastrin were determined. Injection of TRH resulted in an increase in TSH and with some delay in thyroxine and gastric acid levels. Atropine treatment was followed by a decrease in gastric acid secretion and a small decrease in TSH and no changes in the values of the other studied hormones. The results suggest a complex interrelationship between TRH, vagal system and pentagastrin-dependent gastric acid secretion operating in human subjects.  相似文献   

12.
G Improta  M Broccardo 《Peptides》1991,12(3):555-557
Sauvagine (SV) powerfully inhibits gastric acid secretion by both the central and peripheral mechanisms. We examined whether adrenergic mechanisms or prostaglandin pathways might mediate the inhibitory action of SV on acid production in pylorus-ligated rats. Adrenalectomy altered the extent of the SV suppressive effect, suggesting that adrenal-derived substances participate in the action of the peptide. Blockade of adrenergic receptors by propranolol did not modify the antisecretory effect of SV, while the alpha-adrenergic antagonist, phentolamine, and the dopaminergic antagonist, haloperidol, potentiated the gastric response to the peptide. The action of SV appeared to be independent of prostaglandin pathways. We conclude that the antiacid effect of SV may be mediated by the adrenal but probably not by adrenergic or prostaglandin mechanisms.  相似文献   

13.
The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2‐deoxy‐ d ‐glucose (D‐G) (200 mg/kg, intravenous) or ‐carbachol (4 μg/kg, SC) in the 4‐hour pylorus‐ligated rats. The CB1R agonist ( N‐arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D‐G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON‐1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D‐G and reduced MDA and NO contents with an increase in GSH and PON‐1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.  相似文献   

14.
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.  相似文献   

15.
Ghrelin stimulates gastric acid secretion and motility in rats   总被引:49,自引:0,他引:49  
Ghrelin, a novel growth-hormone-releasing peptide, was discovered in rat and human stomach tissues. However, its physiological and pharmacological actions in the gastric function remain to be determined. Therefore, we studied the effects of rat ghrelin on gastric functions in urethane-anesthetized rats. Intravenous administrations of rat ghrelin at 0.8 to 20 microgram/kg dose-dependently increased not only gastric acid secretion measured by a lumen-perfused method, but also gastric motility measured by a miniature balloon method. The maximum response in gastric acid secretion was almost equipotent to that of histamine (3 mg/kg, i.v.). Moreover, these actions were abolished by pretreatment with either atropine (1 mg/kg, s.c.) or bilateral cervical vagotomy, but not by a histamine H(2)-receptor antagonist (famotidine, 1 mg/kg, s.c.). These results taken together suggest that ghrelin may play a physiological role in the vagal control of gastric function in rats.  相似文献   

16.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

17.
Sauvagine: effects on gastric acid secretion in rats   总被引:1,自引:0,他引:1  
G Improta  M Broccardo 《Peptides》1988,9(4):843-846
Intracerebroventricular (ICV) and subcutaneous (SC) injections of sauvagine powerfully inhibited gastric acid secretion stimulated by gastric distension and by 2-deoxy-D-glucose, but not by histamine in pylorus-ligated rats. Naloxone failed to antagonize the antisecretory effects of SC and ICV sauvagine. Intravenous infusion of sauvagine completely suppressed bethanechol-stimulated gastric secretion, significantly decreased pentagastrin-stimulated gastric secretion and did not modify histamine-stimulated gastric secretion in gastric-perfused rats. The inhibitory effect of sauvagine on gastric secretory response is not mediated through opioid or histamine receptors. It appears to be dependent on a vagal mechanism as well as other mechanisms that await further elucidation.  相似文献   

18.
Basal (nonstimulated) gastric acid output was determined in conscious rats fitted with indwelling gastric cannulae. The adenosine deaminase resistant analog of adenosine, R-phenylisopropyladenosine, elevated intraluminal pH beyond 7.0 and decreased gastric acid secretion when given at doses of 0.10 or 1.0 mg/kg, while S-phenylisopropyladenosine at similar doses did not affect either gastric acid output or pH. The potent adenosine receptor antagonist, 8-phenyltheophylline, given at doses of 0.1, 1.0, and 2.5 mg/kg augmented gastric acid output and, at doses of 0.01, 0.1, 1.0, and 2.5 mg/kg, blocked the acid-reducing effect of R-phenylisopropyladenosine (0.1 mg/kg). These data suggest that adenosine systems may be important regulators of gastric function.  相似文献   

19.
The effect of synthetic rat atriopeptin (AP) II was examined on basal, vagally and carbachol-induced gastric acid secretion in anesthetized rats. AP II infusion, at stepwise increasing doses of 2, 20 and 100 ng/kg/min, had no effect on basal acid secretion. At doses of 2 and 20 ng/kg/min, AP II augmented vagally induced acid secretion significantly. The secretory response to vagal stimulation + AP II 20 ng/kg/min was completely abolished by atropine. In contrast a higher dose of AP II (50 ng/kg/h) reduced vagally induced acid secretion significantly. This dose of AP II also reduced acid secretion during direct cholinergic stimulation by carbachol, while the lower dose of 20 ng/kg/min had no effect on carbachol-induced acid secretion. The present data demonstrate for the first time an effect of atrial peptide on gastric acid secretion. At lower doses AP II augments the vagal influence on parietal cell function perhaps by augmenting vagally induced acetylcholine release. At higher doses AP II exerts an inhibitory effect on parietal cell function during vagally and carbachol-induced acid secretion, suggesting different and as yet unknown mechanisms of action. These results raise the possibility that the heart can exert a hormonally mediated influence on the regulation of gastric acid secretion.  相似文献   

20.
The advent of the H2-histamine-receptor antagonists has given new life to the old hypothesis that histamine might be the final common chemical mediator of acid secretion. The available evidence, however, does not prove this hypothesis but does confer on histamine a role in the regulation of acid secretion in normal physiology. Evidence is mounting that, in addition to its stimulatory action, the vagus may play an inhibitory role in acid secretion and gastrin release. Our concepts of the gastric phase of acid secretion have been extended by the discovery of cross distension reflexes in the stomach: the pyloro-oxyntic reflex for acid secretion and the oxyntopyloric reflex for gastrin release. In addition, digested protein has been shown to stimulate directly the oxyntic gland mucosa, but the evidence is against a role for this mechanism in the intact stomach. The hormone(s) responsible for the intestinal phase have not been isolated but the physiological characteristics of entero-oxyntin (a nongastrin, enteric substance that acts on the oxyntic cell) have been defined. Gastric inhibitory polypeptide is an excellent candidate for the entero-gastrone released by fat, but whether it is the sole enterogastrone released is yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号