首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
研究用乳糖替代IPTG作为诱导剂进行重组蛋白的表达,观察乳糖对乳糖操纵子调控的基因工程菌发酵及重组血管内皮抑素表达的影响,从而选取最佳诱导表达条件。以重组人血管内皮抑素表达工程菌pETrhEN/BL21(DE3)作为研究对象,分别用IPTG和乳糖作为诱导剂,在摇瓶中进行表达实验。并对重组蛋白质表达量进行分析。然后在5 L发酵罐中进行验证。在摇瓶培养条件下,乳糖浓度大于0.5 g/L即可以诱导目的蛋白的表达。乳糖浓度1 g/L时诱导目的蛋白表达量与1 mmol/L的IPTG相当,当乳糖浓度为10 g/L,目的蛋白表达量达到最大。在发酵罐培养条件下,补料4 h后葡萄糖浓度基本耗尽,此时开始加入乳糖。诱导后1 h,即有重组蛋白表达,在诱导后4 h达到高峰(占菌体可溶性蛋白的56%),与此同时,诱导后5 h菌体浓度也达到最高值。在以乳糖操纵子为调控手段的工程菌表达系统中,可以使用乳糖作为诱导剂,诱导应在葡萄糖消耗完后进行。  相似文献   

3.
Summary The use of isopropyl--d-thiogalactoside (IPTG) for induction of the lac-promoter in small-scale cultivations is well established. However, for large-scale microbiological processes the cost of this inducer is a severe limitation. Here is described a method by which lactose is used as inducer of the lac promoter with the same efficiency as that of IPTG. It was found that after growth on glucose the time of the addition of lactose is important for the quality of induction. the resulting yield of the recombinant protein increased when lactose was added to the culture if the glucose concentration was rather low. By careful monitoring of the glucose level in the fermentation, using a biosensor, it was possible to add the inducer when the carbon source was nearly depleted. Using Escherichia coli BL21 (pET3), in which was cloned the main antigen coat protein of the foot and mouth disease virus, induction of the gene led to expression of the target protein at a level exceeding 20% of the total cell protein.Offprint requests to: P. Neubauer  相似文献   

4.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  相似文献   

5.
This paper describes the isolation and characterization of a mutant of Escherichia coli that transports lactose and its analog thiomethylgalactoside via the arabinose permeation system. Unlike transport via the lactose permease, this transport is not inhibited by thiodigalactoside, but was inhibited by arabinose, xylose, and fucose. The site of the mutation was in the arabinose C gene and confers constitutivity on the entire arabinose operon. Furthermore, this transport was found in 24 independently isolated arabinose-constitutive strains, and in strains which had been induced with arabinose and then starved to remove all traces of it. It was therefore concluded that lactose and thiomethylgalactoside are low-affinity substrates of at least one component of the normal arabinose permeation system.  相似文献   

6.
The accompanying articles (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253; Mitchell, W.J., Saffen, D. W., and Roseman, S. (1987) J. Biol. Chem. 262, 16254-16260) show that "inducer exclusion" in intact cells of Escherichia coli is regulated by IIIGlc, a protein encoded by the crr gene of the phosphoenolpyruvate:glycose phosphotransferase system (PTS). The present studies attempt to show a direct effect of IIIGlc on non-PTS transport systems. Inner membrane vesicles prepared from a wild type strain of Salmonella typhimurium (pts+), carrying the E. coli lactose operon on an episome, showed respiration-dependent accumulation of methyl-beta-D-thiogalactopyranoside (TMG) via the lactose permease. In the presence of methyl-alpha-D-glucopyranoside or other PTS sugars, TMG uptake was reduced by an amount which was dependent on the relative concentrations of IIIGlc and lactose permease in the vesicles. The endogenous IIIGlc concentration in these vesicles was in the range 5-10 microM, similar to that found in whole cells. Methyl-alpha-glucoside had no effect on lactose permease activity in vesicles prepared from a deletion mutant strain lacking the soluble PTS proteins Enzyme I, HPr, and IIIGlc. One or more of the pure proteins could be inserted into the mutant vesicles; when one of the two electrophoretically distinguishable forms of the phosphocarrier protein, IIIGlc Slow, was inserted, both the initial rate and steady state level of TMG accumulation were reduced by up to 40%. The second electrophoretic form, IIIGlc Fast, had much less effect. A direct relationship was observed between the intravesicular concentration of IIIGlc Slow and the extent of inhibition of the lactose permease. No inhibition was observed when IIIGlc Slow was added to the outside of the vesicles, indicating that the site of interaction with the lactose permease is accessible only from the inner face of the membrane. In addition to the lactose permease, IIIGlc Slow was found to inhibit both the galactose and the melibiose permeases. Uptake of proline, on the other hand, was unaffected. The results are therefore consistent with an hypothesis that dephosphorylated IIIGlc Slow is an inhibitor of certain non-PTS permeases.  相似文献   

7.
When Streptococcus bovis JB1 was repeatedly transferred in a medium that contained the non-metabolizable glucose analog, 2-deoxyglucose, it lost its phosphotransferase system (PTS) for glucose but was still able to take up glucose via a facilitated diffusion mechanism. The wild type (JB1) had an inducible enzyme II lactose, but the mutant (JB12DG) had a constitutive lactose PTS. JB12DG was no longer able to exclude lactose when it was provided with glucose, but it retained its ability to expel a non-metabolizable lactose analog. Because JB12DG could utilize glucose and lactose simultaneously and grow in a non-diauxic fashion, it appeared that inducer expulsion was not an important catabolite regulatory mechanism. Based on these results, inducer expulsion may be an artifact of non-metabolizable sugars.  相似文献   

8.
The cytochrome P450 expression systems used in Escherichia coli are highly regulated and involve the use of the lac repressor to control expression. Induction in these systems utilizes the nonmetabolizable analog of lactose, isopropyl-beta-D-thiogalactopyranoside (IPTG), which is the most expensive compound required for an E. coli expression system. To determine if the natural inducer lactose could be used to induce cytochrome P450 expression we examined the expression of three P450 enzymes in E. coli using two different expression systems, pTrc99A and the T7-based PET22b vector. For both systems lactose was found to induce expression of active P450 to concentrations that exceeded the levels achieved with IPTG. A 20-liter fermentation of a P450 expression system in the pTrc plasmid in which lactose was used as the inducer resulted in 2.4 micromol P450/liter, with a total yield of 2 g of cytochrome P450. The use of lactose for protein expression in E. coli should be broadly useful for the inexpensive, large-scale production of heterologous proteins in E. coli.  相似文献   

9.
A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inverse relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate, such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production.  相似文献   

10.
Adhya, Sankar (University of Wisconsin, Madison), and Harrison Echols. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bacteriol. 92:601-608. 1966.-The inhibitory effect of glucose on the induction of the enzymes required for galactose utilization ("glucose effect") was studied in Escherichia coli. Experiments on the uptake into the cell of labeled inducers (d-galactose-C(14) and d-fucose-H(3)) pointed to inhibition at the level of inducer transport as the possible primary mechanism of the glucose effect in the case of the gal enzymes. This interpretation was supported by the finding that a mutant constitutive for the lac enzymes was resistant to glucose inhibition of galactose induction of the gal enzymes; the mutant had acquired a glucose-resistant alternative transport mechanism for galactose via the constitutively synthesized galactoside permease. Further support for the transport inhibition model was provided by the finding that glucose did not substantially inhibit induction of the gal enzymes when glucose and galactose were produced intracellularly by beta-galactosidase hydrolysis of lactose, even if excess glucose was added. The inducer uptake experiments also showed that d-galactose and d-fucose probably enter the cell via different transport systems, although uptake of both compounds was inhibited by glucose.  相似文献   

11.
Clostridium acetobutylicum P262 endoglucanase and cellobiase genes, cloned on a 4.9 kb DNA fragment in the recombinant plasmid pHZ100, were expressed from their own promoter in Escherichia coli. Active carboxymethylcellulase and cellobiase enzymes were produced, but there was no degradation of Avicel. The endoglucanase activities observed in cell extracts of E. coli HB101(pHZ100) differed in their pH and temperature optima from those previously reported for C. acetobutylicum P270. Complementation of E. coli arg and his mutations by cloned C. acetobutylicum DNA was also observed.  相似文献   

12.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

13.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

14.
15.
P450 BM-3是一种具有工业化应用潜力的单加氧酶,可催化饱和脂肪酸羟基化。为提高其在大肠杆菌宿主中的可溶性表达水平,采用乳糖作为诱导剂对P450 BM-3的诱导表达条件进行研究。结果发现:在大肠杆菌的OD600达到0.7~1.5时,添加2.0 g/L的乳糖、30℃诱导10 h可获得最佳诱导效果。与IP TG的诱导效果对比发现:采用乳糖作诱导剂时,菌体生物量提高1.09倍,目标蛋白量提升2.13倍,蛋白包涵体的比例则降低至10%。研究结果表明:乳糖可显著提升P450 BM-3在大肠杆菌中的重组表达水平,并且能够促进p450 BM-3的可溶性表达。  相似文献   

16.
以构建好的大肠杆菌工程菌BL21(DE3)/xylanase为研究对象,研究了以IPTG和乳糖作为诱导剂时重组蛋白的表达规律。在摇瓶发酵条件下研究了诱导剂浓度、诱导时机、诱导培养时间和诱导培养温度对目标蛋白表达的影响。实验结果表明,乳糖作为诱导剂时,重组菌产酶活力33.9 U/mg略高于IPTG作为诱导剂时重组菌产酶活力28.10 U/mg,这为乳糖作为诱导剂应用于重组大肠杆菌生产木聚糖酶提供了参考依据。  相似文献   

17.
Abstract: Alcohol dehydrogenase (ADH) is a key enzyme for the production of butanol, ethanol, and isopropanol by the solvent-producing clostridia. Initial studies of ADH in extracts of several strains of Clostridium acetobutylicum and C. beijerinckii gave conflicting molecular properties. A more coherent picture has emerged because of the following results: (i) identification of ADHs with different coenzyme specificities in these species; (ii) discovery of structurally conserved ADHs (type 3) in three solvent-producing species; (iii) isolation of mutants with deficiencies in butanol production and restoration of butanol production with a cloned alcohol/aldehyde dehydrogenase gene; and (iv) resolution of various ' C. acetobutylicum ' cultures into four species. The three ADH isozymes of C. beijerinckii NRRL B592 have high sequence similarities to ADH-1 of Clostridium sp. NCP 262 (formerly C. acetobutylicum P262) and to the ADH domain of the alcohol/aldehyde dehydrogenase of C. acetobutylicum ATCC 824/DSM 792. The NADH-dependent activity of the ADHs from C. beijerinckii NRRL B592 and the BDHs from C. acetobutylicum ATCC 824 is profoundly affected by the pH of the assay, and the relative importance of NADH and NADPH to butanol production may be misappraised when NAD(P)H-dependent activities were measured at different pH values. The primary/secondary ADH of isopropanol-producing C. beijerinckii is a type-1 enzyme and is highly conserved in Thermoanaerobacter brockii (formerly Thermoanaerobium brockii ) and Entamoeba histolytica . Several solvent-forming enzymes (primary ADH, aldehyde dehydrogenase, and 3-hydroxybutyryl-CoA dehydrogenase) are very similar between C. beijerinckii and the species represented by Clostridium sp. NCP 262 and NRRL B643. The realization of such relationships will facilitate the elucidation of the roles of different ADHs because each type of ADH can now be studied in an organism most amenable to experimental manipulations.  相似文献   

18.
Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum.  相似文献   

19.
Synthesis of granulose was investigated in 15 solvent-producing Clostridium strains. Only one of the strains did not produce granulose. The structure of granulose in Clostridium acetobutylicum P262 consisted of a high-molecular-weight polyglucan containing only (1-->4) linked d-glucopyranose units. Biosynthesis of granulose in C. acetobutylicum P262 was dependent on ADPglucose pyrophosphorylase, and granulose synthase and mutants defective in granulose accumulation lacked either one or both enzyme activities. Granulose-positive revertants exhibited both enzyme activities. ADPglucose pyrophosphorylase and granulose synthase were not subject to allosteric control by metabolites. Granulose accumulation and the biosynthetic enzyme activities were initiated immediately before the pH breakpoint and were detected in cells only at the end of the exponential growth phase. Granulose accumulation did not occur under conditions of nitrogen limitation, excess carbon, or excess energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号