首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of unusual sulfonolipids that are major components of the cell envelope has been found in gliding bacteria of the genus Cytophaga and closely related genera. One of the lipids, capnine, has been previously isolated and shown to be 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid. Capnine accumulates in large quantities in some Capnocytophaga spp., but in other organisms the predominant sulfonolipids are compounds that are less polar than capnine and lack the free amino group of that compound. A method is described for the purification of these less polar lipids employing chromatography on hydroxylapatite and DEAE-cellulose in organic solvents. The sulfonolipids have been isolated in high yield and essentially pure from two Cytophaga spp., one Flexibacter sp. and one Capnocytophaga sp. Preliminary characterization of the lipids of infrared absorption spectroscopy, thin layer chromatography and other methods has shown them to be N-acylaminosulfonates, the aminosulfonate moiety of which is closely related (if not identical) to capnine.  相似文献   

2.
Biosynthesis of a sulfonolipid in gliding bacteria   总被引:1,自引:0,他引:1  
Gliding bacteria of the genus Cytophaga synthesize sulfonolipids (1,2) that contain capnine (1-deoxy-15-methylhexadecasphinganine-1-sulfonic acid). Studies of the incorporation of radiolabeled compounds by C. johnsonae show that cysteate is utilized preferentially to both cystine and inorganic sulfate as a precursor of capnine sulfur and to both cystine and serine as a precursor of carbons 1 and 2 of capnine. The results are consistent with a pathway in which capnine is formed by condensation of cysteate with a fatty acyl CoA. Cystine, added as the sole sulfur source in the presence of glucose, provides the sulfur but not the carbon for capnine. Hence, these cells form cysteate not by direct oxidation of cystine (or cysteine), but by transfer of its sulfur to a different carbon compound.  相似文献   

3.
Many simple gliding bacteria contain significant quantities of phosphate-free, sulfur-containing lipids (sulfonolipids; N-acylamino-3-hydroxyisoheptadecane-1-sulfonic acids, or N-acyl capnines) that recently were shown to function in the ability of Cytophaga johnsonae to migrate over solid surfaces. Reported here is the synthesis, by surface-grown Cytophaga johnsonae cells, of two additional sulfonolipids not present in cells grown in liquid media. These newly characterized sulfonolipids are more polar than the N-acylcapnines characteristic of liquid grown cells. Acid methanolysis of the sulfonolipids revealed that the aminosulfonate capnine was common to all, thus indicating that the chemical differences in the compounds resided in their N-fatty acyl groups, and not in the aminosulfonate moiety. Instead of the non-hydroxy and 3-hydroxy fatty acyl moieties present in sulfonolipids of liquid-grown cells, one new sulfonolipid contained a 2-hydroxy, branched C15 fatty acid, while the other contained a 2,3-dihydroxy, isobranched C16 fatty acid, as indicated by gas chromatographic and mass spectrometric analyses. Although the structure of sulfonolipids thus varies between surface- and liquid-grown cells, no difference was found between the total quantity of sulfonolipids present under either of these conditions. The surface-dependent synthesis of these more polar N-acyl-aminosulfonates ceased immediately when surface-grown populations were suspended in broth. The ability of Cytophaga johnsonae to synthesize these compounds in response to a solid surface may be significant in relation to the organism's ability to migrate over such surfaces; it is one of few instances where a physical interaction of the cell surface has been shown to influence the molecular composition of a prokaryote.Abbreviations LTY tryptone yeast extract medium - TLC thin layer chromatography - FAME fatty acid methyl ester - ECL equivalent chain length - T r retention time - TMS trimethylsilyl - TFA trifluoroacetyl  相似文献   

4.
Capnocytophaga spp. contain a group of unusual sulfonolipids, called capnoids (W. Godchaux III and E. R. Leadbetter, J. Bacteriol. 144:592-602, 1980). One of these lipids, capnine, is 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid; the others are, apparently, N-acylated versions of capnine. The lipids were found, in amounts ranging from 2.5 to 16 mumol of capnoid sulfur per g of cells (wet weight), in two Cytophaga spp. and also in several closely related organisms: several Capnocytophaga spp., Sporocytophaga myxococcoides, two Flexibacter spp., and two Flavobacterium spp. With the exception of the flavobacteria, all of these bacteria have been shown to exhibit gliding motility. The two Flavobacterium spp. belong to a subset of that genus that shares many other characteristics with the cytophagas. Only the Capnocytophaga spp. contained large quantities of capnine as such; in all of the others, most (and possibly all) of the capnoids were present as N-acylcapnines. Capnoid-negative bacteria included some gliding organisms that may not be closely related to the cytophagas: two fruiting myxobacters, a gliding cyanobacterium (Plectonema sp.), Beggiatoa alba, Vitreoscilla stercoraria, Herpetosiphon aurantiacus, and Lysobacter enzymogenes. Nongliding bacteria representing nine genera were also tested, and all of these fell into the capnoid-negative group.  相似文献   

5.
The gram-negative gliding bacterium Cytophaga johnsonae contains not only large quantities of unusual sulfonolipids but also, as we report here, a second class of unusual lipids. These lipids were detected and quantified by two-dimensional thin-layer chromatography of lipids from cells grown in the presence of [14C]acetate and shown by chemical studies to be alpha-N-(3-fatty acyloxy fatty acyl)ornithines. Like the sulfonolipids, these ornithine lipids were localized in the outer membrane (whereas phosphatidylethanolamine was the predominant lipid of the inner membrane). In a sulfonolipid-deficient mutant, the missing lipid was replaced, specifically, by an increased amount of ornithine lipid. Cells grown in liquid media contained predominantly ornithine lipids with nonhydroxylated residues in the O-fatty acyl position. In contrast, surface-grown cells contained a high proportion of ornithine lipids in which the O-fatty acyl group was 3-hydroxylated. The sulfonolipids and ornithine lipids are apparently coregulated in the sense that, regardless of perturbations caused by mutation or growth conditions, their total amounts remain constant at 40% of total cell lipid.  相似文献   

6.
A group of unusual sulfonolipids was found in bacteria of the genus Capnocytophaga. One of these lipids, to which we have assigned the trivial name capnine, was isolated in 98% pure form and was identified, by infrared absorption spectrometry, high-resolution mass spectrometry, and other methods, as 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid. Another lipid appears to be an N-acylated version of capnine; after acid hydrolysis, its sulfur was recovered in a form chromatographically indistinguishable from that of capnine. The new lipids are related structurally to sphingosine and the ceramides, respectively, but differ markedly from those compounds in important respects, notably the presence of the sulfonate group. Some Capnocytophaga strains accumulated mostly capnine, whereas others accumulated mostly N-acylcapnine. All seven strains examined were found to contain the new lipids, in amounts ranging from 7 to 16 mumol/g of cells (wet weight). The lipids were found in isolated cell envelopes, where they were present in amounts ranging up to 400 mg/g of envelope protein; they are, accordingly, major cell components.  相似文献   

7.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Delta9cis and C18:1 Delta11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

8.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Δ9cis and C18:1 Δ11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

9.
Salinibacter ruber is an extremely halophilic bacterium, phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria. Electrospray mass analyses (negative ion) of the total lipid extract of a pure culture of S. ruber shows a characteristic peak at m/z 660 as the most prominent peak in the high-mass range of the spectrum. A novel sulfonolipid, giving rise to the molecular ion [M-H]- of m/z 660, has been identified. The sulfonolipid isolated and purified by thin-layer chromatography was shown by chemical degradation, mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance analysis to have the structure 2-carboxy-2-amino-3-O-(13'-methyltetradecanoyl)-4-hydroxy-18-methylnonadec-5-ene-1-sulfonic acid. This lipid represents about 10% of total cellular lipids, and it appears to be a structural variant of the sulfonolipids found as main components of the cell envelope of gliding bacteria of the genus Cytophaga and closely related genera (W. Godchaux and E. R. Leadbetter, J. Bacteriol. 153:1238-1246, 1983) and of diatoms (R. Anderson, M. Kates, and B. E. Volcani, Biochim. Biophys. Acta 528:89-106, 1978). Since this sulfonolipid has never been observed in any other extreme halophilic microorganism, we consider the peak at m/z 660 the lipid signature of Salinibacter. This study suggests that this novel sulfonolipid may be used as a chemotaxonomic marker for the detection of Salinibacter within the halophilic microbial community in saltern crystallizer ponds and other hypersaline environments.  相似文献   

10.
We have investigated the conditions required to obtain a quantitative yield of methyl esters from cholesteryl esters by alkaline methanolysis. Methanolysis of the cholesteryl ester for 60 min at room temperature with 1 m methoxide reagent ensured complete reaction. Some ester hydrolysis always accompanied methanolysis and necessitated acid-catalyzed methylation of the resultant fatty acids after completion of the alcoholysis. Analysis of the composition of methyl ester product and remaining cholesteryl ester substrate before methanolysis had gone to completion showed selective hydrolysis of some fatty acid cholesteryl esters and illustrates the importance of obtaining a quantitative yield of methyl esters following methanolysis.  相似文献   

11.
Polar lipids comprise about 90% of the total chloroform-methanol extractable lipids of the Gram-negative, fresh-water, ring-forming bacterium Flectobacillus major FM and consist of at least 10 constituents. These are aminophosphosphingolipids, 2-N-(2'-D-hydroxy-13'-methyltetradecanoyl)-15-methyl-4(E)-hexad ecasph ingenyl-1-phosphoethanolamine (36.8% of the total polar lipids) and its 2'-deoxy derivative (3.7%); sulfonic-acid analogues of ceramide, 2-D-(2'-D-hydroxy-13'-methyltetradecanoyl)amino-3-D-hydroxy-15-met hyl hexadecane-1-sulfonic acid (18.1%) and its 2'-deoxy derivative (3. 5%); a lipoamino acid, N-[3-D-(15'-methylhexadecanoyloxy)-15-methylhexadecanoyl]-gl ycine (3. 7%); a lipodipeptide, N-?N'-[3"-D-(15"'-methylhexadecanoyloxy)-15"-methylhexadecanoyl ]glycy l?-L-serine (7.8%); 1,2-diacyl-sn-glycero-3-phosphoethanolamine (7. 7%), 1,2-diacyl-3-alpha-D-galactopyranosyl-sn-glycerol (2.9%); ceramide phospho-myo-inositol (4.9%), and a previously described unusual glycosphingolipid, 7-deoxy-7-amino-D-manno-heptulosonopyranosyl (1-hydroxycarbonyl-6-deoxy-6-amino-alpha-D-mannopyranosyl) ceramide (10.9%); the last two lipids contain only 15-methyl-4(E)-hexadecasphingenine as a long-chain base. The sole structural type of amide-bound fatty acids in the sphingolipids, including the sulfonic-acid analogues, is iso-15:0, either non-hydroxylated or hydroxylated at 2-C, whereas 15-methylhexadecanoic acid is the major ester-bound fatty acid in the remaining lipids.  相似文献   

12.
Fatty Acid and Polar Lipid Composition in the Classification of Kurthia   总被引:2,自引:1,他引:1  
Strains of Kurthia zopfii were degraded by acid methanolysis and the non-hydroxylated fatty acid esters so released were examined by gas liquid chromatography. The major fatty acid types were straight-chain, anteiso - and iso -methyl branched-chain acids. Monounsaturated fatty acids were not detected. The major fatty acid in five of the six strains examined consisted of 12-methyltetra-decanoic ( anteiso -C15) acid. The other strain possessed major amounts of both 13-methyltetradecanoic ( iso -C15) and anteiso -C15 acids. Polar lipids of all the strains were examined by two-dimensional thin-layer chromatography. All possessed a very simple polar lipid composition consisting of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine.  相似文献   

13.
Diversity analyses of microbial enrichments obtained from deep sulfidic water (2000 m) collected from the Black Sea indicated the presence of eleven novel putative lineages of bacteria affiliated to the family Marinifilaceae of the phylum Bacteroidetes. Pure cultures were obtained for four strains (i.e. M1PT, M3P, A4T and 44) of this family, which could be grouped into two different clades based on their 16S rRNA gene sequences. All four strains were Gram-negative, rod-shaped and facultative anaerobic bacteria. The genomes of all strains were sequenced and physiological analyses were performed. All strains utilized a wide range of carbon sources, which was supported by the presence of the pathways involved in carbon utilization encoded by their genomes. The strains were able to grow at elevated hydrostatic pressure (up to 50 MPa), which coincided with increased production of unsaturated and branched fatty acids, and a decrease in hydroxy fatty acids. Intact polar lipid analysis of all four strains showed the production of ornithine lipids, phosphatidylethanolamines and capnine lipids as major intact polar lipids (IPLs). Genes involved in hopanoid biosynthesis were also identified. However, bacteriohopanepolyols (BHPs) were not detected in the strains. Based on distinct physiological, chemotaxonomic, genotypic and phylogenetic differences compared to other members of the genera Ancylomarina and Labilibaculum, it was concluded that strains M1PT and A4T represented two novel species for which the names Ancylomarina euxinus sp. nov. and Labilibaculum euxinus sp. nov., respectively, are proposed.  相似文献   

14.
Earlier work in our laboratory demonstrated that gliding bacteria of the Cytophaga-Flexibacter group contain, in their cell envelopes, large quantities of unusual sulfonolipids (N-fatty acyl 2-amino-3-hydroxyisoheptadecane-1-sulfonic acids). Recently, it has been shown that these lipids are necessary for the gliding motility of C. johnsonae. As one approach to determining the role of the lipids in motility, methods have now been developed for separating the inner (cytoplasmic) and outer membranes of a strain (ATCC 43786) of this Gram-negative bacterium. Sulfonolipid is at least five times as abundant in the outer membrane as in the inner. The inner membrane has properties similar to those found for other Gram-negative bacteria; it has a buoyant density of 1.14 g/ml and is highly enriched in cytochromes and succinate dehydrogenase. The outer membrane (1.18 g/ml) is enriched in bound carbohydrate and sulfonolipid, but contains little or no 2-keto-3-deoxyoctonate (such as is found in the enterobacteria). The localization of the sulfonolipids in the outer membrane permits focus on the possible roles these unusual substances may play in gliding motility.Abbreviations used IM inner membrane - OM outer membrane - KDO 2-keto-3-deoxyoctonate - EDTA ethylenediaminetetraacetic acid - SDH succinate dehydrogenase  相似文献   

15.
The sex pheromone gland of female Heliothis virescens was analyzed for fatty acid and lipid content. Base methanolysis of the gland showed a large amount of methyl (Z)-11-hexadecenoate (Z11-16:Acyl), the fatty acyl analog of the major pheromone component, (Z)-11-hexadecenal, as well as a small amount of methyl (Z)-11-octadecenoate. Methyl esters of various common fatty acids were also observed. HPTLC analysis of the glandular lipids revealed large quantities of triacylglycerols (TGs), and lesser amounts of 1,2-diacylglycerols (1,2-DGs), 2-monoacylglycerols (2-MGs), phosphatidyl ethanolamines, and phosphatidyl cholines. The greatest amount of Z11-16:Acyl in these lipids was in the TGs, with lesser amounts in the two phospholipid classes and only trace amounts in the other neutral lipids. The glands of females at various ages and photoperiodic times were extracted, fractionated into neutral and polar fractions by silica SPE, and fatty acid titers in these fractions determined. All fatty acids, but notably Z11-16:Acyl, showed significant total and neutral lipid fraction peaks at mid scotophase for 2-day-old females; a less dramatic, but significant, Z11-16:Acyl peak in the polar fraction was also observed. However, only a relatively small proportion (<50%) of this acid was recovered from the silica at all times. This "non-recoverable" Z11-16:Acyl showed a dramatic and significant peak at mid scotophase for 2-day females, corresponding roughly with maximal pheromone titer. All other acids in the gland were recovered in high proportions, and their respective "non-recoverable" titers were not different at any of the times analyzed. Based on previous work, this non-recoverable Z11-16:Acyl is likely the CoA ester. Therefore, it appears that the pheromone gland of H. virescens maintains pools of Z11-16:Acyl in both CoA ester and TG forms, which are available for biosynthesis of pheromone. These pools are greatest during maximal pheromone production when the biosynthetic enzymes, possibly the fatty acid reductase, are unable to utilize rapidly enough the quantities of Z11-16:Acyl biosynthesized.  相似文献   

16.
Different model lipids-alkanes, fatty alcohols, fatty acids, resin acids, free sterols, sterol esters, and triglycerides-were treated with Pycnoporus cinnabarinus laccase in the presence of 1-hydroxybenzotriazole as mediator, and the products were analyzed by gas chromatography. The laccase alone decreased the concentration of some unsaturated lipids. However, the most extensive lipid modification was obtained with the laccase-mediator system. Unsaturated lipids were largely oxidized and the dominant products detected were epoxy and hydroxy fatty acids from fatty acids and free and esterified 7-ketosterols and steroid ketones from sterols and sterol esters. The former compounds suggested unsaturated lipid attack via the corresponding hydroperoxides. The enzymatic reaction on sterol esters largely depended on the nature of the fatty acyl moiety, i.e., oxidation of saturated fatty acid esters started at the sterol moiety, whereas the initial attack of unsaturated fatty acid esters was produced on the fatty acid double bonds. In contrast, saturated lipids were not modified, although some of them decreased when the laccase-mediator reactions were carried out in the presence of unsaturated lipids suggesting participation of lipid peroxidation radicals. These results are discussed in the context of enzymatic control of pitch to explain the removal of lipid mixtures during laccase-mediator treatment of different pulp types.  相似文献   

17.
Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C(14). The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C(14) and methyl palmitate-1-C(14). This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate.  相似文献   

18.
Representative strains of Gardnerella vaginalis were degraded using both an alkaline and an acid methanolysis and the fatty acid methyl esters released examined by thin-layer and gas chromatography. The profiles obtained were both qualitatively and quantitatively similar and were comprised of straight chain saturated and unsaturated non-hydroxylated fatty acids with hexadecanoic acid (16:0) and octadecenoic acid (18:1) the major components. All of the strains contained very characteristic polar lipid patterns consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, five partially identified glycolipids and an uncharacterised phospholipid. Analyses of wall amino acid preparations using gas chromatography showed that Gardnerella vaginalis strains contain major amounts of alanine, glycine, glutamic acid and lysine. The chemical data support the integrity of the genus Gardnerella.  相似文献   

19.
Pollard M  Ohlrogge J 《Plant physiology》1999,121(4):1217-1226
Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [(13)C(2)(18)O(2)]Acetate was incubated with spinach (Spinacia oleracea) leaves and the (18)O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an (18)O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the (18)O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of (18)O or, less likely, complete loss of (18)O, but not a 50% loss of (18)O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of "prokaryotic" and "eukaryotic" lipids have both been confirmed.  相似文献   

20.
Strains of 2, 4-diaminobutyric acid-containing coryneform bacteria were degraded by acid methanolysis and the non-hydroxylated fatty acid esters released examined by thin-layer and gas chromatography. The major fatty acid structural types were straight-chain, anteiso - and iso -methyl branched-chain acids. Polar lipids of the test strains were examined by two-dimensional thin-layer chromatography. All strains possessed very characteristic polar lipid patterns consisting of diphosphatidylglycerol, phosphatidylglycerol and a number of uncharacterized glycolipids. Menaquinones (vitamin K) were the sole isoprenoid quinones detected in the test strains. Corynebacterium insidiosum, Cor. michiganense, Cor. nebraskense and Cor. sepedonicum contained unsaturated menaquinones with nine isoprene units, whereas unsaturated menaquinones with 10 isoprene units predominated in strains of Cor. iranicum and Cor. tritici and a strain labelled Arthrobacter sp. The single strain of Cor. aquaticum examined contained comparable amounts of menaquinones with 10 and 11 isoprene units whereas strains of Cor. mediolanum and Flavobacterium dehydrogenans contained major amounts of menaquinones with 11 and 12 isoprene units. The results of the present study indicate that lipid markers may be of considerable value in the classification and identification of 2, 4-diaminobutyric acid-containing phytopathogenic and saprophytic coryneform bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号