首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Selective chemical modification of the hemoprotein by tetranitromethane was used in order to elucidate the functional role of tyrosine residues in the cytochrome P-450 LM2 molecule. It was shown that the degree of cytochrome P-450 LM2 modification can be determined, using the second derivative of the UV absorption spectra. Modification of one tyrosine residue resulted in the inactivation of cytochrome P-450 LM2. Nitration of the cytochrome was accompanied by changes in the spectral properties of the hemoprotein with the formation of spectra typical of hyperporphyrin structures, thus suggesting the involvement of tyrosine residues in the formation of the active center of cytochrome P-450 LM2.  相似文献   

2.
Carboxyl groups of NADPH-cytochrome P-450 reductase have been modified with the water-soluble carbodiimide EDC. Although there is no significant loss in DCPIP reduction the activity with cytochrome c and cytochrome P-450 LM2 as electron acceptors was inhibited by about 60 and 85%, respectively (1 h incubation time, 20 mM EDC). The inactivation by EDC was nearly completely prevented in the presence of cytochrome P-450 LM2, but not by bovine serum albumin. These results and crosslinking studies suggest that carboxyl groups of NADPH-cytochrome P-450 reductase are involved in charge-pair interactions to cytochrome c and to at least two amino groups of cytochrome P-450 LM2.  相似文献   

3.
Addition of nicotine to phenobarbital-inducible cytochrome P-450 caused a shift of maximum of Soret peak toward the red approximately 3 nm. The difference spectrum produced by nicotine showed a type 2 spectral change with a peak at 427 nm and a trough at 393 nm. A spectral dissociation constant of phenobarbital-inducible cytochrome P-450 was found to be 0.16 mM for nicotine. Nicotine oxidation in the reconstituted system depended on cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH. These results indicate that phenobarbital-inducible cytochrome P-450 participates in nicotine oxidation.  相似文献   

4.
Three cDNAs for chimeras between cytochrome P-450s (pHP3 and pHP2-1) were constructed and inserted between the alcohol dehydrogenase promoter and terminator regions of the yeast expression vector pAAH5 to form expression plasmids, pAH3P2, pAH3E2, and pAH3A2. pAH3P2 contained the entire coding sequence of cytochrome P-450 (pHP2-1) except for the 3rd, the 8th, the 36th, and the 42nd residues of the total of 490 amino acids. Nucleotide sequences of pAH3P2 were replaced with those of cytochrome P-450 (pHP3) in the region coding for the NH2-terminal 210 and 262 amino acid residues to yield pAH3E2 and pAH3A2, respectively. The three expression plasmids were introduced into Saccharomyces cerevisiae AH22 cells and cytochrome P-450 s (3P2, 3E2, and 3A2) were purified from the microsomal fractions of the transformed yeast cells. In the oxidized state either of the cytochromes exhibited a low- and high-spin mixed-type spectrum of cytochrome P-450. The reduced CO complex of the cytochromes showed a Soret absorption maximum at 450 nm. When laurate or caprate was added to ferric cytochrome P-450 s (3P2 and 3E2), the spectrum was converted to that of the typical high-spin type, indicating the binding of the fatty acids to the substrate site of the cytochromes. On the other hand, the addition of the fatty acids to ferric cytochrome P-450 (3A2) induced no spectral change. Only chemicals having a carboxyl group caused such spectral conversion of cytochrome P-450 (3P2) among dodecyl compounds examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
S L Wagner  R D Gray 《Biochemistry》1985,24(14):3809-3814
Spectral changes accompanying the binding of the nonionic detergent n-octyl beta-D-glucopyranoside (n-octyl glucoside) to cytochrome P-450LM2 purified from liver microsomes of phenobarbital-treated rabbits have been compared to changes in catalytic activity obtained in a reconstituted system consisting of various levels of detergent, P-450LM2, and NADPH-cytochrome P-450 reductase. In the absence of substrate and reductase, addition of n-octyl glucoside to 2-3 mM resulted in a difference spectrum (detergent-bound minus detergent-free cytochrome) characterized by a small maximum at 390 nm and a minimum at 410 nm, suggestive of a slight stabilization of the high-spin (S = 5/2) state of the cytochrome. As the detergent concentration was increased to 4-8 mM (corresponding to maximal activity and pentameric or hexameric P-450), a new peak appeared at 427 nm while the minimum remained at 410 nm. Between 10 and 30 mM n-octyl glucoside (conditions which produced catalytically inactive and monomeric P-450) the minimum in the difference spectrum shifted to 390 nm and the maximum to 425 nm, characteristic of a shift in spin equilibrium toward low-spin (S = 1/2) cytochrome. At low and high detergent concentrations, substrate [d-benzphetamine with n-octyl glucoside or cyclohexane with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)] was bound to P-450LM2 with formation of high-spin P-450, although the increase in high-spin cytochrome was less at high detergent levels than at low. The affinity of P-450 for substrate decreased by 2-3-fold at high detergent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A cDNA library was constructed from liver mRNA of a beta-naphthoflavone-induced rabbit. Two clones pLM4-1 and pLM6-1 containing 2.2-kbp inserts that hybridized at low stringincy with a mouse P1 P-450 probe were selected. The clone pLM4-1 was fully sequenced and found to contain a full-length cDNA coding for cytochrome P-450 LM4. Partial sequence and restriction mapping made it possible to identify pLM6-1 as coding for the major part of cytochrome P-450 LM6. Cloned LM4-1 cDNA was reformed by deletion of the 5' and 3' non-coding regions before insertion into yeast expression vectors PYe DP1/10. A similar operation was performed on pLM6-1 cDNA after replacement of the missing N-terminus-coding sequences by homologous sequences form the pLM4-1 clone resulting in a chimeric cytochrome P-450 coding sequence. Expression of cloned rabbit cytochrome P-450 into transformed yeast was optimized by studying the effect of the nature of the DNA sequence just preceding the initiation codon on the level of cytochrome P-450 production. Yeast synthesized cytochromes P-450 were characterized by immunoblotting, spectra and catalytic activity determinations. Cloned cytochrome P-450 LM4 was found by all criteria to be identical to the authentic rabbit one. The chimeric cytochrome P-450 that contains the 143 N-terminal amino acids of cytochrome P-450 LM4 and the remaining 375 amino acids of cytochrome P-450 LM6 was found to exhibit most of the authentic cytochrome P-450 LM6 catalytic properties. Enzymatic and evolutionary implications of these results are discussed.  相似文献   

7.
A new form of cytochrome P-450 has been purified from untreated male rabbit liver microsomes. This form was designated P-450 LM2b on the basis of its electrophoretic mobility on SDS polyacrylamide gel, where it migrates as a polypeptide of apparent molecular weight of 50,250. This hemoprotein exhibits a maximum at 448.5 nm in the Soret band of the CO-Ferrous state spectrum. On the basis of its molecular, spectral, enzymologic and immunologic data, P-450 LM2b was shown to be distinct from the other P-450 forms, already characterized in rabbit liver microsomes. However P-450 LM2b and P-450 LM3b appear to be immunologically related proteins.  相似文献   

8.
Phenazepam (I) and 3-hydroxymetabolite (II) interacting with cytochrome P-450 of the liver of rats administered phenobarbital and 3-methylcholantrene demonstrated the 2nd type of spectral changes in hemoprotein. The binding constants of I and II considerably differ, which points to the possibility of interaction of substrates with different areas of hemoproteins. The characteristic points (maximum, minimum, isobestic) of the cytochrome P-450 spectrum were displaced during II titration to the longwave region as compared with I. The calculation of electron density on the atoms of the heterocycle and aromatic nuclei of the molecules of I and II has shown that the differences in the spectra of I and II binding with cytochrome P-450 are determined by the distribution of electron density of their heterocycle.  相似文献   

9.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

10.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

11.
Subunit interactions of highly purified hexameric cytochrome P-450 LM 2 has been studied using covalent binding of one of the six protomers to an insoluble matrix. Immobilized cytochrome was catalytically active in monooxygenase reactions and retained the spectral characteristics of cytochrome P-450 LM 2. High ionic strength, large scale pH changes and addition of guanidine chloride were without effect on the aggregation state of the immobilized hemoprotein. However, several detergents induced hexamer dissociation. The crucial role of hydrophobic forces in hexamer subunit interaction was demonstrated. Incubation of the immobilized cytochrome P-450 LM 2 with sonicated liposomes composed of various phospholipids did not result in oligomer dissociation and protein translocation from the matrix to the lipid phase, although the catalytic activity of the immobilized cytochrome significantly increased in the presence of liposomes. The data suggest that cytochrome P-450 LM 2 may be of hexameric structure in the native membranes.  相似文献   

12.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

13.
Recent investigations in this laboratory on the mechanism of action of liver microsomal cytochrome P-450 (P-450 LM) and its interaction with other components of the hydroxylation system are presented. Two electrophoretically homogeneous forms of the cytochrome, phenobarbital-inducible P-450 LM2 and 5,6-benzoflavone-inducible P-450 LM4, so designated according to their relative electrophoretic mobilities, were used in these studies. Phosphatidylcholine is required in the reconstituted enzyme system for rapid electron transfer from NADPH to P-450 LM, catalyzed by NADPH-cytochrome P-450 reductase, as well as for maximal hydroxylation activity with either molecular oxygen or a peroxy compound serving as oxygen donor to the substrate. The phospholipid facilitates the binding of both substrate and reductase to P-450 LM and apparently causes a structural change in the cytochrome as shown by an increase in alpha-helical content, determined by circular dichroic spectrometry. P-450LM3 and LM4 are one-electron acceptors under anaerobic conditions, in accord with previous potentiometric titrations and product yield data, but in disagreement with previous titrations with reducing agents. The cause for the discrepancy between the present and earlier results is not yet fully understood. Stopped flow spectrophotometry was employed to detect intermediates in the reaction of peroxy compounds with P-450LM2. With m-chloroperbenzoic acid the intermediate formed has absorption maxima at 375, 425, and 540 nm in the absolute spectrum and at 370, 436, and 540 nm in the difference spectrum (intermediate minus oxidized form). A study of the magnitude of the spectral change at various peracid concentrations indicated that with this oxidant the reaction shows a dependence resembling a binding curve. These and other experiments with various oxidants, including cumente hydroperoxide, suggest a reversible two-step mechanism according to the reaction: P-450 LM + oxidant equilibrium C equilibrium D, where C may be an enzyme-oxidant complex and D is a spectral intermediate of unknown structure. A scheme is proposed for the mechanism of action of P-450 LM based on these and earlier studies, including evidence from deuterium isotope experiments for the formation of a substrate carbon radical prior to oxygen transfer.  相似文献   

14.
Oral administration of triacetyloleandomycin (TAO), 1 mmol/kg/day for 7 days to mature male New Zealand White rabbit results in a significant increase in the content of liver microsomal cytochrome P-450. This increase is accompanied by the occurrence on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the microsomes of a strong band in the zone of electrophoretic mobility associated with the LM3 isozymes and the stimulation of a number of monooxygenase activities of these microsomes including aminopyrine, chlorcyclizine, TAO, and erythromycin demethylation as well as 2-OH-estradiol and 6 beta OH-testosterone hydroxylation. Cytochrome P-450 LM3 (TAO) from these liver microsomes, purified to electrophoretic homogeneity, had Mr = 52,000 as determined by calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison with isozymes LM3a, LM3b, and LM3c isolated from control animals, by a number of criteria including spectral data, amino acid content, NH2-terminal sequence analysis, peptide mapping, immunological properties, and monooxygenase activities of reconstituted system, indicated that isozymes LM3 (TAO) and LM3b are very similar, if not identical, proteins. We conclude that TAO must be considered as a new type of inducer of microsomal cytochrome P-450 from rabbit liver.  相似文献   

15.
Two constitutive forms of cytochrome P-450, designated P-450ib and P-450ic, were purified from intestinal mucosa microsomes of untreated rabbits. P-450ib and P-450ic have minimal molecular weights of 56 000 and 49 000, respectively, as determined by calibrated sodium dodecyl sulphate polyacrylamide gel electrophoresis. The CO-reduced difference spectral maximum of cytochrome P-450ib is at 450 nm and P-450ic is at 451 nm. Both the cytochromes preferentially demethylate aminopyrine, benzphetamine and N,N-dimethylaniline in the presence of NADPH-cytochrome P-450 reductase. Cytochrome P-450ib has absorption maxima at 417, 535 and 573 nm in the oxidized form, indicating that this cytochrome is in a low-spin state. Ouchterlony double-diffusion studies show that cytochrome P-450ib does not cross-react with antisera against liver cytochrome P-450LM2 purified from phenobarbital-treated rabbits, but P-450ic cross-reacts with spur formation. Unlike cytochrome P-450ib, P-450ic is very similar, if not identical, to liver cytochrome P-450LM2 on the basis of its molecular weight, spectral properties, catalytic activities and immunochemical properties.  相似文献   

16.
The interaction of highly purified liver microsomal cytochrome P-450 from phenobarbital-induced rabbits and cytochrome b5 has been investigated by the difference and second derivative difference spectroscopy. The addition of cytochrome b5 to cytochrome P-450 results in transition of cytochrome P-450 heme iron from low to high spin state. The interaction is accompanied by the changes in the second derivative spectrum of cytochrome P-450, which point to the participation of tryptophanyl residues in this process. The hydrophilic fragment of cytochrome b5 is unable to form a complex with cytochrome P-450 as judged by the absence of the difference spectrum and any changes in the second derivative UV-spectrum of cytochrome P-450. The evidence obtained indicates that the hydrophobic tail of the cytochrome b5 molecule responsible for its binding to membrane is also indispensable for forming a functional cytochrome P-450-cytochrome b5 complex.  相似文献   

17.
Methoxyflurane is an anesthetic whose metabolism by cytochrome P-450LM2 has been shown to be dependent upon a heat-stable microsomal protein (Canova-Davis, E., and Waskell, L. A. (1982) Biochem. Biophys. Res. Commun. 108, 1264-1270). Treatment of this protein with diethylpyrocarbonate, which modifies selected amino acids, caused a dose-dependent loss in its ability to effect the metabolism of methoxyflurane by purified cytochrome P-450LM2. This protein factor has been identified as cytochrome b5 by demonstrating that cytochrome b5 and the heat-stable factor coelute during cytochrome b5 purification. Neither ferriheme nor apocytochrome b5 was able to substitute for the activating factor, while cytochrome b5 reconstituted from apocytochrome b5 and heme exhibited an activity similar to that of native b5. Examination of the cytochrome b5 molecule by computer graphics suggested that diethylpyrocarbonate did not inactivate b5 by reacting with the anionic surface of the cytochrome b5 molecule. Maximal rates of methoxyflurane metabolism were obtained at a ratio of 1:1:1 of the three proteins, cytochrome P-450LM2:reductase:cytochrome b5. In summary, it has been demonstrated that the heat-stable protein, cytochrome b5, is obligatory for the metabolism of methoxyflurane by cytochrome P-450LM2. These data also suggest that cytochrome b5 may be acting as an electron donor to P-450LM2 in the O-demethylation of methoxyflurane.  相似文献   

18.
Water-soluble carbodiimide-catalyzed cross-linking of purified cytochrome P-450 LM2, cytochrome b5, and NADPH-cytochrome P-450 reductase was used to identify stable complexes formed between these proteins. High yields of P-450-b5 and P-450 reductase-b5 dimers, and lower yields of P-450 reductase-LM2 dimers were obtained. Substitution of native b5 and P-450 reductase with fully amidinated derivatives showed that LM2 and b5 were cross-linked exclusively through their respective amino and carboxyl groups. However, there appeared to be two complexation sites on the reductase which cross-link to b5 through amino groups and to LM2 through carboxyl groups respectively. A heterotrimer could not be identified following incubation of all three proteins together with EDC.  相似文献   

19.
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.  相似文献   

20.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号