首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effects of agonist and antagonist muscle fatigue on the performance of rapid, self-terminating movements. Six subjects performed rapid, consecutive elbow flexion and extension movements between two targets prior to and after fatiguing either the elbow flexor or elbow extensor muscles. The experiments demonstrated consistent results. Agonist muscle fatigue was associated with a decrease in peak velocity and peak deceleration, while a decrease in peak acceleration was particularly prominent. Antagonist muscle fatigue, however, was associated with a decrease in peak deceleration, while a decrease in both the peak velocity and peak acceleration was modest and, in some tests, non-significant. The relative acceleration time (i.e. acceleration time as a proportion of the total movement time) increased when agonists were fatigued, but decreased when antagonists were fatigued. Taken together, these results emphasize the mechanical roles of the agonist and antagonist muscles; namely, the fatigue of each muscle group particularly affected the movement phase in which that group accelerated a limb, while changes of the movement kinematics pattern provided more time for action of the fatigued muscles. In addition, the results presented suggest that agonist muscle fatigue affects movement velocity more than antagonist muscle fatigue, even in movements that demonstrate prominently both mechanical and myoelectric activity of the antagonist muscles, such as rapid, self-terminating movements. Accepted: 11 February 1997  相似文献   

2.
This paper presents a model of saccadic eye movements. Eye movements are considered as being ballistic, since saccades (rapid concurrent movements of both eyes) occur several hundred thousand times per day; visual perception of the environment is interrupted by a saccade. The optimal control was constructed for the motion considered in three consecutively refined assumptions. The controls included in the time-optimal problem were the resultant moment of force exerted by the extraocular muscles, individual moments of force exerted by either muscle of the agonist–antagonist pair, and finally, the rate of change of these moments. This approach is consistent with the view that is currently upheld by physiologists, who believe that a saccade is programmed by the central nervous system before the beginning of an eye movement and is scarcely adjusted during the movement itself. The solution of the optimal control problem and the results obtained by subsequent numerical modeling of saccadic trajectories were compared with the published experimental data. The saccadic trajectories were compared based on the main sequence, the known consistent relationship between saccade amplitude and duration, which is the most widely applied and commonly accepted way of describing saccade data. The main sequence of saccades obtained from the solution of the optimal control problem formulated in the most complete form agreed well with published experimental results.  相似文献   

3.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

4.
The aim of this study was to determine the effect of elbow joint position on electromyographic (EMG) and mechanomyographic (MMG) activities of agonist and antagonist muscles in young and old women. Surface EMG and MMG were recorded from the triceps and biceps brachii, and brachioradialis muscles during isometric elbow extensions in young and old women. The measurements were carried out at an optimal joint angle (A(o)), as well as at smaller (A(s) = A(o) - 30 degrees ) and larger (A(l) = A(o) + 30 degrees ) angles. The normalized to force EMG amplitude (RMS-EMG/F) was smaller in old women compared to young in all muscles. The RMS-EMG/F of the triceps brachii muscle was not affected by muscle length while that of the biceps brachii and brachioradialis muscles increased at shortest muscle length in both groups. The normalized to force MMG amplitude (RMS-MMG/F) was smaller in old than in young in the triceps brachii muscle only. There was an increase in RMS-MMG/F with triceps brachii and biceps brachii muscle shortening in both groups, and in the brachioradialis muscle -- in young only. Compared to young, older women exhibited a bigger force fluctuation during maximum voluntary contraction, but these did not contribute significantly to the RMS-MMG. Skinfold thickness accounted for the RMS-EMG/F and RMS-MMG/F differences seen between old and young women in the biceps brachii muscle only. It is concluded that, the EMG and MMG response to muscles length change in agonist and antagonist muscles is generally similar in old and young women but the optimal angle shifts toward a bigger value in older women.  相似文献   

5.
This paper presents a study on the control of antagonist muscle stiffness during single-joint arm movements by optimal control theory with a minimal effort criterion. A hierarchical model is developed based on the physiology of the neuromuscular control system and the equilibrium point hypothesis. For point-to-point movements, the model provides predictions on (1) movement trajectory, (2) equilibrium trajectory, (3) muscle control inputs, and (4) antagonist muscle stiffness, as well as other variables. We compared these model predictions to the behavior observed in normal human subjects. The optimal movements capture the major invariant characteristics of voluntary movements, such as a sigmoidal movement trajectory with a bell-shaped velocity profile, an N-shaped equilibrium trajectory, a triphasic burst pattern of muscle control inputs, and a dynamically modulated joint stiffness. The joint stiffness is found to increase in the middle of the movement as a consequence of the triphasic muscle activities. We have also investigated the effects of changes in model parameters on movement control. We found that the movement kinematics and muscle control inputs are strongly influenced by the upper bound of the descending excitation signal that activates motoneuron pools in the spinal cord. Furthermore, a class of movements with scaled velocity profiles can be achieved by tuning the amplitude and duration of this excitation signal. These model predictions agree with a wide body of experimental data obtained from normal human subjects. The results suggest that the control of fast arm movements involves explicit planning for both the equilibrium trajectory and joint stiffness, and that the minimal effort criterion best characterizes the objective of movement planning and control.  相似文献   

6.
Force-velocity and force-length relations were obtained for the edl of four Wistar rats in order to characterise the contractile properties (CE) of these muscle-tendon complexes. Compliances of the undamped part of the series components (SE) were measured in quick length decreases. Force-extension relations of SEs were obtained by integration of compliance to force. A muscle model consisting of CE, SE and a visco-elastic element was used to simulate the force output of the muscle tendon complex in response to a changing muscle length lOI as input. This simulated force was compared with the experimental force of the same muscle measured in response to the same lOI as input. Tetanic contractions were used in all experiments. The results show that this muscle model can predict the experimental force within a mean maximal error not larger than approximately 14% of the force amplitude. However the comparison of simulated force with experimental force and a few additional experiments show that the muscles do not have a unique instantaneous force-velocity characteristic. As shown by several other studies, force seems to be influenced by many other variables (time, history etc.) than CE length and velocity.  相似文献   

7.
The effects of pre-motion silent period (PSP) on dynamic force exertion were studied in ten healthy subjects performing ballistic elbow extensions. The experiments were designed to evaluate the significance of mean differences between the averaged dynamic force curves of two groups: PSP-presence groups and PSP-absence groups. The presence of PSP was judged quantitatively and automatically by means of a newly developed method using statistical analysis. The results indicated that there were two effects of PSP on dynamic force exertion: one was a reducing effect, observed prior to the movement; the other was a reinforcing effect, observed in the first part of the ballistic movement. The duration of the reinforcement was significantly correlated with the duration of the reducing effect of PSP. The findings suggested that the reinforcement of dynamic force may be produced by the pre-stretch of agonistic muscles caused by prior force reduction due to PSP occurrence. The fact that PSP plays an important role in dynamic force exertion suggests that PSP may be incorporated in the central motor control system designed to interrupt the background activity, to stretch the agonist and to reinforce the dynamic force.  相似文献   

8.
The general static optimisation (GSO) process is one of various muscle force estimation methods due to its low computational requirements. However, it can show biased muscle force estimation under muscle co-contraction. In the present study, we introduced a novel hybrid static optimisation (HSO) method to estimate reasonable muscle forces during muscle co-activation movements using more specific equality constraints, i.e. agonist and antagonist muscle moments predicted from a new correlation coefficient approach. The new method was evaluated for heel-rise movements. We found that the proposed method improved the potential of antagonist muscle force estimation in comparison to the GSO solutions. The proposed HSO method could be applied in biomechanics and rehabilitation, for example.  相似文献   

9.
Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.  相似文献   

10.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

11.
The purpose of this investigation was to determine how the triphasic electromyogram (EMG) pattern of muscle activation developed from the agonist muscle only pattern as movement time (tmov) decreased. Six adult women produced a series of 30 degrees elbow extension movements in the horizontal plane at speeds ranging from ballistic (less than 400-ms tmov) to very slow (greater than 800-ms tmov). Surface EMG from triceps brachii (agonist) and biceps brachii (antagonist) muscles were recorded, together with elbow angle, on a microcomputer. The results showed that triphasic EMG patterns developed systematically as tmov decreased from 1000 ms to less than 200 ms. In trials with very long tmov, many elbow extension movements were produced by a single continuous activation of the agonist triceps brachii muscle. As tmov decreased however, agonist activation became predominantly burst-like and other components of the triphasic EMG pattern [activation of the antagonist (Ant) and second agonist activation (Ag2)] began to appear. At the fastest movement speeds, triphasic EMG patterns (Ag1-Ant-Ag2, Ag1 being first activation of agonist muscle) were always present. This data indicated that the triphasic pattern of muscle activation was not switched on when a particular tmov was achieved. Rather, each component systematically developed until all were present, as distinctive bursts of activity, in most trials with tmov less than 400 ms.  相似文献   

12.
13.
14.
A neuromusculoskeletal tracking (NMT) method was developed to estimate muscle forces from observed motion data. The NMT method combines skeletal motion tracking and optimal neuromuscular tracking to produce forward simulations of human movement quickly and accurately. The skeletal motion tracker calculates the joint torques needed to actuate a skeletal model and track observed segment angles and ground forces in a forward simulation of the motor task. The optimal neuromuscular tracker resolves the muscle redundancy problem dynamically and finds the muscle excitations (and muscle forces) needed to produce the joint torques calculated by the skeletal motion tracker. To evaluate the accuracy of the NMT method, kinematics and ground forces obtained from an optimal control (parameter optimization) solution for maximum-height jumping were contaminated with both random and systematic noise. These data served as input observations to the NMT method as well as an inverse dynamics analysis. The NMT solution was compared to the input observations, the original optimal solution, and a simulation driven by the inverse dynamics torques. The results show that, in contrast to inverse dynamics, the NMT method is able to produce an accurate forward simulation consistent with the optimal control solution. The NMT method also requires 3 orders-of-magnitude less CPU time than parameter optimization. The speed and accuracy of the NMT method make it a promising new tool for estimating muscle forces using experimentally obtained kinematics and ground force data.  相似文献   

15.
Hamstrings activation when acting as antagonists is considered very important for knee joint stability. However, the effect of hamstring antagonist activity on knee joint loading in vivo is not clear. Therefore, the purpose of this study was to examine the differences in antagonistic muscle force and their effect on agonist muscle and intersegmental forces during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum isokinetic eccentric and concentric efforts of the knee extensors at 30 degrees s(-1). The muscular and tibiofemoral joint forces were then estimated using a two-dimensional model with and without including the antagonist muscle forces. The antagonist moment was predicted using an IEMG-moment model. The predicted antagonist force reached a maximum of 2.55 times body weight (BW) and 1.16 BW under concentric and eccentric conditions respectively. Paired t-tests indicated that these were significantly different (p<0.05). A one-way analysis of variance indicated that when antagonist forces are included in the calculations the patella tendon, compressive and posterior shear joint forces are significantly higher compared to those calculated without including the antagonist forces. The anterior shear force was not affected by antagonist activity. The antagonists produce considerable force throughout the range of motion and affect the joint forces exerted at the knee joint. Further, it appears that the antagonist effect depends on the type of muscle action examined as it is higher during concentric compared to eccentric efforts of the knee extensors.  相似文献   

16.
Acoustic signals from frog skeletal muscle.   总被引:10,自引:1,他引:9       下载免费PDF全文
Acoustic, force, and compound muscle action-potential signals were recorded simultaneously during maximal isometric twitches of frog gastrocnemius muscles. The onset of sound production occurred after the onset of muscle depolarization but before the onset of external force production. Acoustic waveforms consisted of oscillations that initially increased in amplitude, followed by decaying oscillations. The peak-to-peak acoustic amplitude increased with increasing temperature with a Q10 of 2.6 +/- 0.2 over a range of 7.0-25.0 degrees C. The acoustic amplitude increased with increasing muscle length up to approximately 90% of the optimal length for force generation. As length was increased further, the acoustic amplitude decreased. Microphones positioned on opposite sides of the muscle recorded acoustic signals that were 180 degrees out of phase. These results provided evidence that sound production is produced by lateral oscillations of muscle. The oscillation frequency may provide a measure of mechanical properties of muscle.  相似文献   

17.
Approximately 90% of hip fractures in older adults result from falls, mostly from landing on or near the hip. A three-dimensional, 11-segment, forward dynamic biomechanical model was developed to investigate whether segment movement strategies prior to impact can affect the impact forces resulting from a lateral fall. Four different pre-impact movement strategies, with and without using the ipsilateral arm to break the fall, were implemented using paired actuators representing the agonist and antagonist muscles acting about each joint. Proportional-derivative feedback controller controlled joint angles and velocities so as to minimize risk of fracture at any of the impact sites. It was hypothesized that (a) the use of active knee, hip and arm joint torques during the pre-contact phase affects neither the whole body kinetic energy at impact nor the peak impact forces on the knee, hip or shoulder and (b) muscle strength and reaction time do not substantially affect peak impact forces. The results demonstrate that, compared with falling laterally as a rigid body, an arrest strategy that combines flexion of the lower extremities, ground contact with the side of the lower leg along with an axial rotation to progressively present the posterolateral aspects of the thigh, pelvis and then torso, can reduce the peak hip impact force by up to 56%. A 30% decline in muscle strength did not markedly affect the effectiveness of that fall strategy. However, a 300-ms delay in implementing the movement strategy inevitably caused hip impact forces consistent with fracture unless the arm was used to break the fall prior to the hip impact.  相似文献   

18.
The efficient coordination of agonist and antagonist muscles is one of the important early adaptations in resistance training responsible for large increases in strength. Weak antagonist muscles may limit speed of movement; consequently, strengthening them leads to an increase in agonist muscle movement speed. However, the effect of combining agonist and antagonist muscle exercises into a power training session has been largely unexplored. The purpose of this study was to determine if a training complex consisting of contrasting agonist and antagonist muscle exercises would result in an acute increase in power output in the agonist power exercise. Twenty-four college-aged rugby league players who were experienced in combined strength and power training served as subjects for this study. They were equally assigned to an experimental (Antag) or control (Con) group and were no different in age, height, body mass, strength, or maximal power. Power output was assessed during bench press throws with a 40-kg resistance (BT P40) with the Plyometric Power System training device. After warming up, the Con group performed the BT P40 tests 3 minutes apart to determine if any acute augmentation to power output could occur without intervention. The Antag group also performed the BT P40 tests; however, an intervention strategy of a set of bench pulls, which is an antagonistic action to the bench throw, was performed between tests to determine if this would acutely affect power output during the second BT P40 test. Although the power output for the Con group remained unaltered between test occasions, the significant 4.7% increase for the Antag group indicates that a strategy of alternating agonist and antagonist muscle exercises may acutely increase power output during complex power training. This result may affect power training and specific warm-up strategies used in ballistic sports activities, with increased emphasis placed upon the antagonist muscle groups.  相似文献   

19.
Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30 degrees x s(-1). The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.  相似文献   

20.
Modelling, simulation and optimisation of a human vertical jump.   总被引:2,自引:0,他引:2  
This paper describes an efficient biomechanical model of the human lower limb with the aim of simulating a real human jump movement consisting of an upword propulsion, a flying and a landing phase. A multiphase optimal control technique is used to solve the muscle force sharing problem. To understand how intermuscular control coordinates limb muscle excitations, the human body is reduced to a single lower limb consisting of three rigid bodies. The biomechanical system is activated by nine muscle-tendon actuators representing the basic properties of muscles during force generation. For the calculation of the minimal muscle excitations of the jump movement, the trajectory of the hip joint is given as a rheonomic constraint and the contact forces (ground reaction forces) are determined by force plates. Based on the designed musculoskeletal model and on the differential equations of the multibody system, muscle excitations and muscle forces necessary for a vertical jump movement are calculated. The validity of the system is assessed comparing the calculated muscle excitations with the registered surface electromyogramm (EMG) of the muscles. The achieved results indicate a close relationship between the predicted and the measured parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号