首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence dependence of the B-A conformational transition of DNA   总被引:2,自引:0,他引:2  
J Mazur  A Sarai  R L Jernigan 《Biopolymers》1989,28(7):1223-1233
We have studied, by conformational analysis, the sequence dependence of DNA conformational transition between B- and A-forms. We have considered intramolecular interactions between base pairs, without backbone, to examine their role in the conformational transition between B- and A-forms, and found that base pairs themselves usually have intrinsic conformational preferences for the B- or A-form. Calculation of all ten possible base steps shows that the base combinations, CC (or GG), GC, AT, and TA, have tendencies to assume the A-conformation. Results show that it is particularly easy to slide along the long axis of the base pair for these steps, with AT and CC showing especially flat energies. These calculations show that a preference for the B- or A-conformation depends on the electrostatic energy parameters, in particular, on dielectric and shielding constants; the A-conformation is preferred for low dielectric constant or low shielding. Both the A- and B-conformations are mainly stabilized by electrostatic interactions between favorably juxtaposed atomic charges on base pairs; however, the B-conformation generally has more favorable van der Waals interactions than the A-form. These sequence-dependent conformational preference and environmental effects agree roughly with experimental observations, suggesting that the origin of the conformational polymorphism is attributable to the intrinsic conformational preference of base pairs.  相似文献   

2.
Huang Y  Weng X  Russu IM 《Biochemistry》2011,50(11):1857-1863
Proton exchange and nuclear magnetic resonance spectroscopy are being used to characterize the kinetics and energetics of base-pair opening in two nucleic acid double helices. One is the RNA duplex 5'-r(GCGAUAAAAAGGCC)-3'/5'-r(GGCCUUUUUAUCGC)-3', which contains a central tract of five AU base pairs. The other is the homologous DNA duplex with a central tract of five AT base pairs. The rates and the equilibrium constants of the opening reaction of each base pair are measured from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results reveal that the tract of AU base pairs in the RNA duplex differs from the homologous tract of AT base pairs in DNA in several ways. The rates of opening of AU base pairs in RNA are high and increase progressively along the tract, reaching their largest values at the 3'-end of the tract. In contrast, the opening rates of AT base pairs in DNA are much lower than those of AU base pairs. Within the tract, the largest opening rate is observed for the AT base pair at the 5'-end of the tract. These differences in opening kinetics are paralleled by differences in the stabilities of individual base pairs. All AU base pairs in the RNA are less stable than the AT base pairs in the DNA. The presence of the tract enhances these differences by increasing the stability of AT base pairs in DNA while decreasing the stability of AU base pairs in RNA. Due to these divergent trends, along the tracts, the AU base pairs become progressively less stable than AT base pairs. These findings demonstrate that tracts of AU base pairs in RNA have specific dynamic and energetic signatures that distinguish them from similar tracts of AT base pairs in DNA.  相似文献   

3.
Fluorescence, circular dichroism and sedimentation through cesium chloride gradient techniques were performed to study the physical properties of the binding of the bisbenzimidazole dye Hoechst 33258 (H33258) to natural DNAs and synthetic polynucleotides of defined repeating units. These studies show that Hoechst 33258 exhibits at least two modes of interaction with duplex DNA: (1) a strong base pair specific mode which requires at least 4 consecutive AT base pairs and (2) a weaker mode of binding which is significantly reduced in the presence of high salt (0.4 M NaCl) and exhibits no apparent base specificity. The H33258 binding was found to be sensitive to the substitutions in the minor groove elements of a series of synthetic polynucleotides supporting the model of H33258 binding in the minor groove of the DNA with AT rich sequences. Similar mode of binding was predicted in natural DNAs by methylation of dye-DNA complexes. Footprint analysis of the complex of dye to a pBR322 fragment also supports that a minimum of 4 consecutive AT base pairs are required for H33258 binding to DNA.  相似文献   

4.
It has previously been demonstrated by other workers that the duplex of a synthetic DNA poly(amino2dA-dT) undergoes a salt-induced conformational isomerization. We show in the present work using circular dichroism that the same isomerization is induced in poly(amino2dA-dT) by various alcohols. The isomerization was originally identified as the B-to-Z and then B-to-A conformational transition of DNA but we demonstrate that the high-salt or alcohol conformation of poly (amino2dA-dT) is the non Z-DNA zig-zag double helix we have previously observed with poly(dA-dT) and called X-DNA. X-DNA is a cesium cation specific conformation of poly(dA-dT) while no similar cation specificity is observed with poly(amino2dA-dT). Thus it appears that the extra amino group attached to A and cesium cations make the same thing; they probably dehydrate the double helix minor groove and relieve its conformational variability. Poly(amino2dA-dT) is exceptionally stable in X-DNA and conditions inducing it are mild, which opens the door to assess its molecular structure.  相似文献   

5.
DNA fragments from chicken erythrocytes were modified by cis-diamminedichloroplatinum(II), its trans-isomer and chlorodiethylenetriaminoplatinum(II) chloride. The conformation of the modified DNA fragments in ethanolic solutions was studied by circular dichroism spectroscopy. Non-modified DNA adopted the A-form in 81% ethanol. The modification of DNA by the three platinum compounds inhibited the B to A transition of DNA induced by high concentrations of ethanol roughly to the same extent. The results support the view that the binding of the platinum complexes to B-DNA lowers the conformational freedom of DNA so that it cannot acquire the A-conformation.  相似文献   

6.
The functioning of the adenine nucleotide carrier as a regulated pore which, depending on incubation conditions, operates as either a specific conductivity channel for H+ and K+ ions, or a nonspecific channel for low molecular weight metabolites, is reviewed. Both specific and nonspecific conductivities over this specific channel are controlled by the conformational state of the carrier protein molecule. The conformational states of the ATP/ADP-carrier alter by the specific effect of adenine nucleotides, ATP/ADP transport inhibitors, Ca2+ ions, medium tonicity, and energization of mitochondria. The transition of the ATP/ADP-carrier to the conformational state characterized by nonspecific conductivity is inhibited by cyclosporin A. The roles of the adenine nucleotide carrier in the realization of effects of Ca(2+)-mobilizing hormones and glucagon during mitochondrial function are discussed.  相似文献   

7.
The binding heterogeneity, conformational aspects, and energetics of the interaction of the cytotoxic plant alkaloid palmatine have been studied with various natural and synthetic DNAs. The alkaloid binds to calf thymus and Escherichia coli DNA that have mixed AT and GC sequences in almost equal proportions with positive cooperativity, while, with Clostridium perfringens and Micrococcus lysodeikticus DNA with predominantly high AT and GC sequences, respectively, noncooperative binding was observed. On further investigation with synthetic DNAs, the binding was observed to be cooperative with polymers like poly(dA).poly(dT) and poly(dG).poly(dC) having poly(purine)poly(pyrimidine) sequences, while with polymers poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), which have alternating purine-pyrimidine sequences, a non-cooperative binding phenomenon was observed. This suggests the binding heterogeneity of palmatine to the two types of sequences of base pairs. Circular dichroism (CD) studies revealed that the binding induced conformational changes in all the DNAs, but more importantly, the bound alkaloid molecules acquired induced optical activity, and the extent was dependent on the AT content and showed AT base-pair specificity. Energetics of the interaction of the alkaloid studied by highly sensitive isothermal titration calorimetry revealed that the binding was in most cases exothermic and favored by both enthalpy and entropy changes, while, in the case of the homo and hetero AT polymers, the same was predominantly entropy-driven. This study defines base-pair-dependent heterogeneity, conformational aspects, and energetics of palmatine binding to DNA.  相似文献   

8.
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

9.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

10.
Møllegaard NE  Nielsen PE 《Biochemistry》2003,42(28):8587-8593
DNA curvature is affected by elevated temperature and dehydrating agents such as 2-methyl-2,4-pentanediol (MPD) (used in crystallization). This effect of MPD has been ascribed to a specific distortion of the structure of adenine tracts (A-tracts), probably through a deformation of the characteristic narrow minor groove. Uranyl photoprobing indicates that a narrowed minor groove is present in all A/T regions containing four or more A/T base pairs. Consequently, this technique may be employed to study conformational changes in other A/T-rich sequences than pure A-tracts. In this study we use uranyl photoprobing to demonstrate that the effect of elevated temperature and MPD is analogous on both "normal" and curve-inducing A/T-rich sequences. The results therefore indicate that under these conditions the minor groove is widened in all A/T sequences and not only in pure A-tracts as previously suggested. Thus, the rather subtle structural difference of AT regions and A-tracts in nonbent DNA versus A-tracts in bent DNA may be quantitative rather than qualitative; i.e., the structure is more persistent and/or rigid in bent DNA.  相似文献   

11.
High-resolution NMR techniques (proton and 19F) have been used to study the interactions between several DNA oligonucleotides with varying length of AT base pairs and the synthetic pyrrole-containing compound (P1-F4S-P1), which has properties similar to the DNA minor groove binding drug distamycin A. When this two-fold symmetrical DNA binding molecule is added to the self-complementary DNA oligomers, the resulting complex exhibits an NMR spectrum without any doubling of individual resonances, consistent with a two-fold symmetry of the complex. This is in contrast to all other complexes studied so far. The minimum length of an AT stretch for specific ligand binding is judged to be greater than 4 base pairs. Inter-molecular proton nuclear Overhauser effects between the ligand molecule and a DNA dodecamer d(CGCAAATTTGCG) provide evidence that P1-F4S-P1 binds DNA in the minor groove and interacts with the middle AT base pairs. The presence of a specific interaction between P1-F4S-P1 and DNA is conclusively demonstrated by 19F NMR studies, in which four previously chemically equivalent fluorine nuclei in the free molecule become two non-equivalent pairs (yielding an AB quartet pattern) upon the binding of P1-F4S-P1 to DNA duplex. A sequence-dependent binding behavior of P1-F4S-P1 is evident by comparing the 19F NMR spectra of the complexes between P1-F4S-P1 and two different but related DNA dodecamers, d(CGCAAATTTGCG) and d(CGCTTTAAAGCG). P1-F4S-P1 binds more strongly to the former dodecamer with an association constant of approximately 1 X 10(3) M-1.  相似文献   

12.
4', 6-Diamidine-2-phenylindole forms fluorescent complexes with synthetic DNA duplexes containing AT, AU and IC base pairs; no fluorescent complexes were observed with duplexes containing GC base pairs or with duplexes containing a single AT base pair sandwiched between GC pairs. The binding site size is one molecule of dye per 3 base pairs. The intrinsic binding constants are higher for alternating sequence duplexes than for the corresponding homopolymer pairs. With the exception of the four-stranded helical poly rI which exhibits considerable fluorescence enhancement upon binding of the ligand, none of the single- or multi- stranded polyribonucleotides and ribo-deoxyribonucleotide hybrid structures form fluorescent complexes with the dye. Poly rI is the only RNA which forms a DNA B-like structure (Arnott et al. (1974) Biochem. J. 141, 537). The B conformation of the helix and the absence of guanine appear to be the major determinants of the specificity of the fluorescent binding mode of the dye. Nonfluorescent interactions of the dye with polynucleotides are nonspecific; UV absorption and circular dichroic spectra demonstrate binding to synthetic single- and double-stranded DNA and RNA analogs, including those containing GC base pairs.  相似文献   

13.
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA‐binding proteins by superimposing DNA‐bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA‐binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Proteins 2014; 82:841–857. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Kinetic characteristics of specific recognition of damaged base by the DNA glycosylase MutY in model DNA substrates, containing oxoG/A-, G/A-, oxoG/C- and F/G pairs in the central position, were investigated. Conformational changes of the MutY enzyme during the recognition of the damaged base in DNA have been recorded by the change in the fluorescence intensity of tryptophan residues using the stopped-flow technique in real time. DNA duplexes containing a fluorescein residue were used for the registration of DNA conformational changes. Analysis of the kinetic curves allowed us to determine the values of rate constants for the kinetic stages of the interaction. It was shown that nonspecific contacts between the DNA-binding site of the enzyme and the DNA duplex are formed at the first stage of the interaction. It was found that the discrimination of Gua and oxoGua bases occurs at the second stage of the MutY interaction with the DNA duplex. The data obtained for the oxoG/C-substrate showed that the recognition of the base located opposite oxoGua also occurs at this stage.  相似文献   

15.
Interdependence of conformational variables in double-helical DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Sarai  R L Jernigan    J Mazur 《Biophysical journal》1996,71(3):1507-1518
DNA exhibits conformational polymorphism, with the details depending on the sequence and its environment. To understand the mechanisms of conformational polymorphism and these transitions, we examine the interrelationships among the various conformational variables of DNA. In particular, we examine the stress-strain relation among conformational variables, describing base-pair morphology and their effects on the backbone conformation. For the calculation of base pairs, we use the method previously developed to calculate averages over conformational variables of DNA. Here we apply this method to calculate the Boltzmann averages of conformational variables for fixed values of one particular conformational variable, which reflects the strain in the structure responding to a particular driving stress. This averaging over all but one driving variable smooths the usual rough energy surface to permit observation of the effects of one conformational variable at a time. The stress-strain analyses of conformational variables of base pair slide, twist, and roll, which exhibit characteristic changes during the conformational transition of DNA, have shown that the conformational changes of base pairs are strongly correlated with one another. Furthermore, the stress-strain relations are not symmetrical with respect to these variables, i.e., the response of one coordinate to another is different from the reverse direction. We also examine the effect of conformational changes in base-pair variables on the sugar-backbone conformation by using the minimization method we developed. The conformational changes of base pairs affect the sugar pucker and other dihedral angles of the backbone of DNA, but each variable affects the sugar-backbone differently. In particular, twist is found to have the most influence in affecting the sugar pucker and backbone conformation. These calculated conformational changes in base pairs and backbone segments are consistent with experimental observations and serve to validate the calculation method.  相似文献   

16.
Mnt repressor is indirectly responsible for the maintenance of lysogeny of the phage P22. This repressor interacts with a 21-base pair operator DNA constituting within it a 17-base pair perfect 2-fold symmetric sequence whose bases make a direct contact with the protein. We have synthesized six 37-base pair DNAs consisting of 21 base pair natural operator and its modifications in which certain symmetrically situated GC base pairs were replaced systematically with ATs to understand their importance. The binding interaction studies of Mnt repressor to such natural and modified operator DNAs reported here indicate that the GCs close to the center of symmetry make major contacts with the protein whereas, GCs nearer to the periphery form weak contacts. Methylation protection experiments indicated that when the GCs near the center of symmetry were replaced with AT, the central GC became more accessible for dimethyl sulfate methylation with possible conformational change in DNA. The circular dichroism studies indicated that upon repressor binding conformational changes in DNA takes place with a possible increase in helicity of the repressor protein.  相似文献   

17.
The nucleosomal aggregates were obtained by micrococcal nuclease treatment to chicken erythrocyte nuclei. There still leaves a bulk of nucleosomes. We used two different DNA assay methods to determine DNA in in situ nucleosomes; the Feulgen DNA assay which shows a positive apurinic acid, and the fluorometry with Hoechst 33258 which reveals only intact AT base pairs. On applying those methods to the aggregates, even in a short digestion, Feulgen DNA remains only about 1/4 of the non-digested nuclei and the fluoroassay leaves only a trace amount of AT base pairs. Thus, the nucleosomes derived from the heterochromatin of erythrocytes are not preserved as the residual DNA of Feulgen hydrolysis. This also suggests that the bulk of nucleosomal DNA is masked and sensitive to neither the Feulgen assay nor the fluorometry of AT base pairs.  相似文献   

18.
The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-aminoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 A resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.  相似文献   

19.
It is demonstrated that a two-state conformational isomerization is induced in the poly(amino2-dA-dT) duplex by submillimolar concentrations of divalent magnesium cations in low-salt aqueous solution. The isomerization is fast and has a low degree of cooperativity. The resulting conformer is the unusual X-DNA double helix originally observed with poly(dA-dT) at very high concentrations of CsF. Interestingly, the X form is induced in poly(amino2dA-dT) under the physiological conditions when poly(dG-methyl5dC) assumes Z-DNA. The same conditions of stabilization are presumably connected with the fact, observed in previous phosphorus NMR studies, that Z- and X-DNA have similar polydinucleotide backbone architectures. Results presented in this work permit to specify base pair exocyclic groups responsible for the radically different conformational variability of the synthetic DNA molecules containing alternating purine-pyrimidine sequences of GC or AT base pairs.  相似文献   

20.
Sequence dependence of DNA conformational flexibility   总被引:9,自引:0,他引:9  
A Sarai  J Mazur  R Nussinov  R L Jernigan 《Biochemistry》1989,28(19):7842-7849
By using conformational free energy calculations, we have studied the sequence dependence of flexibility and its anisotropy along various conformational variables of DNA base pairs. The results show the AT base step to be very flexible along the twist coordinate. On the other hand, homonucleotide steps, GG(CC) and AA(TT), are among the most rigid sequences. For the roll motion that would correspond to a bend, the TA step is most flexible, while the GG(CC) step is least flexible. The flexibility of roll is quite anisotropic; the ratio of fluctuations toward the major and minor grooves is the largest for the GC step and the smallest for the AA(TT) and CG steps. Propeller twisting of base pairs is quite flexible, especially of A.T base pairs; propeller twist can reach 19 degrees by thermal fluctuation. We discuss the effect of electrostatic parameters, comparison with available experimental results, and biological relevance of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号