首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刺激杏仁基底外侧核对外侧缰核神经元单位放电的影响   总被引:2,自引:0,他引:2  
用玻璃微电极细胞外记录大鼠外侧缰核(LHN)神经元的单位放电。共记录了110个神经元。其中痛兴奋神经元(LHPE)75个;痛抑制神经元(LHPI)11个;广动力型神经元2个;无反应神经元17个;此外还有5个对躯体与内脏伤害性刺激反应不同的神经元。电刺激杏仁基底外侧核(以下简称杏仁核,AMG)对LHPE和LHPI的自发放电主要产生抑制作用,分别占总数的81.1%和72.7%,并抑制其对伤害性刺激的反应;对无反应神经元和广动力型神经元无明显影响。AMG内微量注射吗啡能抑制LHPE的伤害性刺激反应,但对其自发放电无明显影响。微量注射纳洛酮则可增加LHPE的自发放电频率,并加强其对伤害性刺激的反应。注射纳洛酮还可以取消电针对LHPE的伤害性刺激反应的抑制作用。  相似文献   

2.
刺激蓝斑及电针对大鼠脊髓背角神经元伤害性反应的影响   总被引:2,自引:0,他引:2  
以往的工作表明,蓝斑(LC)-去甲肾上腺素能神经元系统在痛觉调制和针刺镇痛中起着重要作用,本文用电生理学方法研究刺激LC和电针对大鼠脊髓背角神经元伤害性反应的影响,其主要结果如下:1、刺激LC或电针有明显抑制脊髓背角神经元伤害性反应的作用。2、损毁中缝大核和腹腔注射纳洛酮并不明显影响刺激LC的抑制效应。3、α2受体激动剂氯压啶能加强刺激LC或电针的抑制效应,而α受体阻断剂酚妥拉明在一定程度上能削弱这种抑制效应,这些实验结果提示,刺激LC和电针可激活LC神经元,通过其下行纤维,在脊髓水平释放NE,通过α2受体,阻断伤害性信息的传递。  相似文献   

3.
The effect of reversible functional inactivation of the second somatosensory cortex of the cerebral hemispheres on changes in the transmission of the afferent signals in the trigeminal nuclei after electroacupuncture was studied in acute experiments on adult cats anesthetized with hexenal (59 mg/kg i. p.). After functional inactivation of the second somatosensory cortex electroacupuncture failed to facilitate the evoked potentials in the oral trigeminal nucleus by stimulation of the tooth pulp and the lip of the mouth. In the caudal nucleus, the inhibitory effect of electroacupuncture on noxious stimulation decreased. The involvement of this brain cortex in the mechanisms of action of electroacupuncture on functionally different nuclei is discussed.  相似文献   

4.
强电针穴位对背角神经元镇痛效应广泛性的中枢机制   总被引:18,自引:0,他引:18  
何晓玲  刘乡 《生理学报》1995,47(6):605-609
实验用雄性大鼠,玻璃微电极细胞外记录T12-L1脊髓背角会聚神经元对后爪伤害性刺激的反应,观察到低强度(2V)电针作用于与痛源接近的“足三里”穴对背角神经元的伤害性反应有明显的抑制作用,而远隔穴位“下关”穴则无效。而当采用超过C类纤维阈值18V电针时,则远隔穴位“下关”也有明显的镇痛作用。表现为强电针穴位镇痛作用的广泛性。而损毁NRM后,强电针(18V)远节段“下关”穴的镇痛作用消失,而近节段“足  相似文献   

5.
Bioelectric reactions of individual neurons in specific and nonspecific thalamus nuclei were studied in acute experiments on cats. Auricular or body point electroacupuncture (EAP) was shown to affect the functions of spontaneously active neurons in the nuclei under study. Two types of spontaneously active neurons were identified: some were activated and some inhibited in response to EAP stimulation. The number of neurons activated in response to EAP was 50% greater in specific thalamus nuclei than in nonspecific ones, while inhibition was mostly observed in nonspecific thalamus cells.  相似文献   

6.
Effects of electroacupuncture (EAP) on the responses of different functional types of neurons of the oral trigeminal nucleus (OTN) by nociceptive and non-nociceptive stimulation were studied in acute experiments on adult cats. It was demonstrated that the main part of neurons of the OTN is a wide dynamic range of neurons. Characteristic feature of the OTN is neurons with low-threshold pulp afferent input. EAP inhibit nociceptive responses of neurons (preferentially nonspecific neurons), while responses to non-nociceptive stimulation are not changed at all. The results are discussed from the point of view that OTN takes part in nociceptive and non-nociceptive reactions.  相似文献   

7.
The effects of innocuous and noxious sural nerve stimulation on the SEP scalp topography were examined in 15 human subjects. This analysis focused on the 6 stable periods (i.e., consecutive time points where the topography did not change) that were identified in the companion paper (Dowman 1994). Stable period 1 (SP1: 58–90 msec post stimulus), SP4 (178–222 msec) and SP5 (223–277 msec) showed amplitude-stimulus intensity relationships that are similar to those of neurons involved in the sensory-discriminative aspects of innocuous somatosensation. The SP1 topographic pattern showed little or no change across the innocuous and noxious stimulus levels, which together with the amplitude data suggests that SP1 is largely generated by neurons involved in innocuous somatosensation. The SP4 topographic pattern did not change appreciably across the innocuous and noxious stimulus levels, but its aplitude decreased with increasing noxious stimulation. These data suggest that SP4 is generated by neurons involved in innocuous somatosensation and that noxious inputs inhibit these cells. There were differences in the SP5 topographic patterns evoked at the innocuous and the noxious stimulus levels, which suggest SP5 also receives a contribution from neurons involved in noxious somatosensation. SP3 (135–157 msec) and SP6 (282–339 msec) are probably generated by neurons involved in noxious somatosensation. The topographic patterns of both were different at innocuous and noxious levels. SP3's amplitude-stimulus intensity function suggests that it is generated by neurons that respond to noxious inputs in a non-graded fashion. The amplitude and offset latency of SP6 increased with increasing noxious stimulation, which suggests that SP6 is generated by neurons that respond to noxious inputs in a graded fashion.  相似文献   

8.
大鼠扣带回前部对外侧缰核单位放电的抑制作用   总被引:1,自引:0,他引:1  
电刺激扣带回前部,对75%的外侧缰核痛兴奋神经元(pain-excitative neuron of lateral habenular nucleus,LHPE)和75%的痛抑制神经元(pain-inhibitive neuron of lateral habenular nucleus,LHPI)的自发放电均产生抑制作用,并取消躯体和内脏伤害性刺激对外侧缰核(lateral habenular nucleus,LHN)单位放电的影响。扣带回内微量注射吗啡可以抑制LHPE的自发放电,并取消伤害性刺激对LHPE的增频效应。注射纳洛酮则使LHPE的自发放电增多,加强伤害性刺激对LHPE的增频作用,并可拮抗电针对LHPE伤害性刺激反应的抑制作用。  相似文献   

9.
The patterns of tonic activity in the neurons of rabbit superior cervical ganglion at rest and during noxious stimulation of the skin were studied using intracellular recording. According to reflex changes in the activity patterns, all neurons studied were classified into three groups. Cardiac rhythmicity is more pronounced in the neurons of the second type than in those of the first type. The magnitude of the cardiac rhythmicity in both types of neurons was reduced after noxious stimulation of the skin. In the third type of neurons the cardiac rhythmicity was absent. In some neurons slow excitatory and inhibitory postsynaptic potentials appeared resulting from skin stimulation.  相似文献   

10.
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.  相似文献   

11.
张竞  刘敏芝 《动物学报》1989,35(3):279-286
用微电极细胞外记录的方法,观察内脏痛、躯体痛和触觉刺激对大鼠丘脑后核(PO)中770个神经元电活动的影响,其中305(38.3%)个对伤害性刺激起反应,103(13.4%)个对触觉刺激起反应。对伤害性刺激反应的神经元中多数对躯体痛和内脏痛刺激均起反应且反应形式相同,少数反应不同或相反,对触觉刺激反应的神经元中多数也对两种伤害性刺激均起反应,只对触觉刺激反应的神经元很少。  相似文献   

12.
Dizocilpine maleate (MK-801) causes the blockage of the glutamic acid (Glu) receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of MK-801 in pain-related neurons is not clear, and it is still unknown whether Glu is involved in the modulation of this processing. This study examines the effect of MK-801, Glu on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in NAc were recorded by a glass microelectrode. Our results revealed that the lateral ventricle injection of Glu increased the discharged frequency and shortened the discharged latency of PEN, and decreased the discharged frequency and prolonged the discharged inhibitory duration (ID) of PIN in NAc of rats evoked by the noxious stimulation, while intra-NAc administration of MK-801 produced the opposite response. On the basis of above findings we can deduce that Glu, MK-801 and N-methyl-d-aspartate (NMDA) receptor are involved in the modulation of nociceptive information transmission in NAc.  相似文献   

13.
Discomfort and pain are the sensations most commonly evoked from viscera. Most nociceptive signals that originate from visceral organs reach the central nervous system (c.n.s.) via afferent fibres in sympathetic nerves, whereas parasympathetic nerves contain mainly those visceral afferent fibres concerned with the non-sensory aspects of visceral afferent function. Noxious stimulation of viscera activates a variety of specific and non-specific receptors, the vast majority of which are connected to unmyelinated afferent fibres. Studies on the mechanisms of visceral sensation can thus provide information on the more general functions of unmyelinated afferent fibres. Specific visceral nociceptors have been found in the heart, lungs, testes and biliary system, whereas noxious stimulation of the gastro-intestinal tract appears to be detected mainly by non-specific visceral receptors that use an intensity-encoding mechanism. Visceral nociceptive messages are conveyed to the spinal cord by relatively few visceral afferent fibres which activate many central neurons by extensive functional divergence through polysynaptic pathways. Impulses in visceral afferent fibres excite spinal cord neurons also driven by somatic inputs from the corresponding dermatome (viscero-somatic neurons). Noxious intensities of visceral stimulation are needed to activate viscero-somatic neurons, most of which can also be excited by noxious stimulation of their somatic receptive fields. The visceral input to some viscero-somatic neurons in the spinal cord can be mediated via long supraspinal loops. Pathways of projection of viscero-somatic neurons include the spino-reticular and spino-thalamic tracts. All these findings give experimental support to the 'convergence-projection' theory of referred visceral pain. Visceral pain is the consequence of the diffuse activation of somato-sensory nociceptive systems in a manner that prevents accurate spatial discrimination or localization of the stimuli. Noxious stimulation of visceral receptors triggers general reactions of alertness and arousal and evokes unpleasant and poorly localized sensory experiences. This type of response may be a feature of sensory systems dominated by unmyelinated afferent inputs.  相似文献   

14.
多巴胺对大鼠背角WDR神经元的抑制不被酚妥拉明...   总被引:3,自引:0,他引:3  
吕韶岗  梅俊 《生理学报》1992,44(4):362-369
The inhibitory effects of dopamine (DA) applied spinally on the wide dynamic range (WDR) neurons of dorsal horn in rats were studied with extracellular recording technique. 54 WDR units were tested from 43 rats. With a dosage of DA from 0.26 x 10(-6) to 1.58 x 10(-6) mol/kg, the inhibitory effect of the neurotransmitter on the responses of dorsal horn neurons to noxious transcutaneous electrical stimulation exhibited a gradual increase. After DA (0.52 x 10(-6) mol/kg) administration, the inhibitory effect of DA began to appear in 5 min and reach to maximum in 15 min, whereupon the maximum level could be maintained for about 25 min. This effect of DA could be reversed completely by dopaminergic receptor antagonist, droperidol (0.66 x 10(-6) mol/kg) but not by 2.65 x 10(-6) mol/kg phentolamine or 1.37 x 10(-6) mol/kg naloxone. The results of the present investigation suggest that DA may be involved in the modulation of nociception at the spinal level as an independent neurotransmitter.  相似文献   

15.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

16.
高明  何莲芳 《生理学报》1996,48(2):125-131
用放射自显影方法观察到;(1)大鼠脚掌注射福尔马林后,某些与镇痛有关的脑区如尾核头部、伏隔核、杏仁核、中央灰质、脚间核、中缝大核、脊髓背角等结构中μ阿片受体密度明显增加(P<0.05,P<0.01);(2)给予电针抑制痛反应的大鼠,在其大部分上述结构及扣带回、隔区、视前内侧区、内膝体、上丘、中缝背核及中央上核受体密度明显增加;与福尔马林注射组相比,脚间核、中央灰质尾端腹外侧区、腰膨大背角的受体密度进一步增加。从而在受体水平支持伤害性刺激可以激活体内内阿片肽能活动,而电针可以加强这一活动的设想。  相似文献   

17.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

18.
为了研究纹状体边缘区和痛觉的关系,用c-fos和NADPH-d双标记方法研究了大鼠面部伤害性刺激后c-fos蛋白(Fos)和NOS在纹状体边缘区的表达。面部伤害性刺激后30分钟,边缘区中即出现Fos表达,刺激后3小时,Fos表达达最高峰,而且主要在边缘区部位表达。正常大鼠纹状体边缘区中有密集的NOS阳性神经元及纤维,面部伤害性刺激3小时后,纹状体其余部位的NOS阳性胞体及纤维减少或消失,但边缘区中仍保留,并可见少数Fos和NOS双标记细胞,提示纹状体边缘区可能和面部痛觉的调制有关。  相似文献   

19.
下丘脑室旁核加压素能神经元参与电针刺激对实验性...   总被引:3,自引:0,他引:3  
龚珊  殷伟平 《生理学报》1992,44(5):434-441
It has been demonstrated in animal model of somatic pain that hypothalamic paraventricular nucleus (PVN) participates in acupuncture analgesia, probably by mediation of vasopressin release. The role of PVN in acupuncture analgesia for experimental visceral pain in rats was further investigated in the present study. Experimental results demonstrated that electroacupuncture could inhibit the writhing response, produced by intraperitoneal injection of antimonium potassium tartrate and this inhibitory effect could be enhanced by electrical stimulation of PVN, but decreased by electrolytical lesion of PVN, intracerebroventricular injection of vasopressin antiserum (14 microliters) or the vasopressin antagonist, d(CH2)5Tyr(Me)-AVP (500 ng/5 microliters). Intraperitoneal administration of the latter drug (10 micrograms/kg), however, was ineffective. The above experimental results suggest that vasopressinergic neurons in PVN also participate in the inhibition of visceral pain by electroacupuncture.  相似文献   

20.
The nature of responses of neurones in substance nigra reticular (SNR) part of cats to nociceptive electrical stimulations and change of these responses under the action of electroacupuncture (EA) in the area corresponding to the Tsui-Sang-Li point in man have been studied. The most of the neurons studied (72.1%) responded to nociceptive stimulation either with excitation of inhibition of the impulsive activity. The EA eliminated or changed the effect of nociceptive stimulation in 73.2% of the SNR nociceptive responsive neurones. Intravenous naloxone administration blocked the effect of EA depending on a dose. A conclusion has been made that the SNR neurones are involved in the modulation of nociceptive transmission and that the EA action is directed to some restoration of the nociceptive disturbed balance between the excitatory and inhibitory processes in the SNR neuronal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号