首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac fibroblasts regulate formation of extracellular matrix in the heart, playing key roles in cardiac remodeling and hypertrophy. In this study, we sought to characterize cross-talk between Gq and Gs signaling pathways and its impact on modulating collagen synthesis by cardiac fibroblasts. Angiotensin II (ANG II) activates cell proliferation and collagen synthesis but also potentiates cyclic AMP (cAMP) production stimulated by beta-adrenergic receptors (beta-AR). The potentiation of beta-AR-stimulated cAMP production by ANG II is reduced by phospholipase C inhibition and enhanced by overexpression of Gq. Ionomycin and thapsigargin increased intracellular Ca2+ levels and potentiated isoproterenol- and forskolin-stimulated cAMP production, whereas chelation of Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid/AM inhibited such potentiation. Inhibitors of tyrosine kinases, protein kinase C, or Gbetagamma did not alter this cross-talk. Immunoblot analyses showed prominent expression of adenylyl cyclase 3 (AC3), a Ca2+-activated isoform, along with AC2, AC4, AC5, AC6, and AC7. Of those isoforms, only AC3 and AC5/6 proteins were detected in caveolin-rich fractions. Overexpression of AC6 increased betaAR-stimulated cAMP accumulation but did not alter the size of the ANG II potentiation, suggesting that the cross-talk is AC isoform-specific. Isoproterenol-mediated inhibition of serum-stimulated collagen synthesis increased from 31 to 48% in the presence of ANG II, indicating that betaAR-regulated collagen synthesis increased in the presence of ANG II. These data indicate that ANG II potentiates cAMP formation via Ca2+-dependent activation of AC activity, which in turn attenuates collagen synthesis and demonstrates one functional consequence of cross-talk between Gq and Gs signaling pathways in cardiac fibroblasts.  相似文献   

2.
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.  相似文献   

3.
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.  相似文献   

4.
Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE2 receptors EP1 and EP3 and the PGF2alpha receptor FP, and that PGF2alpha stimulates melanocyte dendricity. We now show that PGF2alpha stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF2alpha by melanocytes. These results show that PGF2alpha binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF2alpha in melanocytes in response to ultraviolet radiation suggest that PGF2alpha could act as an autocrine factor for melanocyte differentiation.  相似文献   

5.
PGF(2alpha) is the most abundant prostaglandin detected in urine; however, its renal effects are poorly characterized. The present study cloned a PGF-prostanoid receptor (FP) from the rabbit kidney and determined the functional consequences of its activation. Nuclease protection assay showed that FP mRNA expression predominates in rabbit ovary and kidney. In situ hybridization revealed that renal FP expression predominates in the cortical collecting duct (CCD). Although FP receptor activation failed to increase intracellular Ca(2+), it potently inhibited vasopressin-stimulated osmotic water permeability (L(p), 10(-7) cm/(atm.s)) in in vitro microperfused rabbit CCDs. Inhibition of L(p) by the FP selective agonist latanoprost was additive to inhibition of vasopressin action by the EP selective agonist sulprostone. Inhibition of L(p) by latanoprost was completely blocked by pertussis toxin, consistent with a G(i)-coupled mechanism. Heterologous transfection of the rabbit FPr into HEK293 cells also showed that latanoprost inhibited cAMP generation via a pertussis toxin-sensitive mechanism but did not increase cell Ca(2+). These studies demonstrate a functional FP receptor on the basolateral membrane of rabbit CCDs. In contrast to the Ca(2+) signal transduced by other FP receptors, this renal FP receptor signals via a PT-sensitive mechanism that is not coupled to cell Ca(2+).  相似文献   

6.
Prostaglandins (PGs) play a pivotal role in the initiation and progression of term and preterm labor. Uterine activity is stimulated primarily by PGE(2) and PGF(2alpha) acting on prostaglandin E (EP) and prostaglandin F (FP) receptors, respectively. Activation of FP receptors strongly stimulates the myometrium, whereas stimulation of EP receptors may lead to contraction or relaxation, depending on the EP subtype (EP1-4) expression. Thus, the relative expression of FP and EP1-4 may determine the responsiveness to PGE(2) and PGF(2alpha). The aims of this study were to characterize the expression of EP1-4 and FP in intrauterine tissues and placentome, together with myometrial responsiveness to PG, following the onset of dexamethasone-induced preterm and spontaneous term labor. Receptor mRNA expression was measured using quantitative real-time polymerase chain reaction using species-specific primers. There was no increase in myometrial contractile receptor expression at labor onset, nor was there a change in sensitivity to PGE(2) and PGF(2alpha). This suggests expression of these receptors reaches maximal levels by late gestation in sheep. Placental tissue showed a marked increase in EP2 and EP3 receptor expression, the functions of which are unknown at this time. Consistent with previous reports, these results suggest that PG synthesis is the main factor in the regulation of uterine contractility at labor. This is the first study to simultaneously report PG E and F receptor expression in the key gestational tissues of the sheep using species-specific primers at induced-preterm and spontaneous labor onset.  相似文献   

7.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

8.
To clarify the molecular basis for the prostaglandin (PG) mediated effects in adipose cells at various stages of their development, expression of mRNAs encoding receptors specific for prostaglandin E2, F2alpha and I2 (i.e. EP, FP, and IP receptors) was investigated in differentiating clonal Ob1771 pre-adipocytes, as well as in mouse primary adipose precursor cells and mature adipocytes. We have further characterized the differential expression of mRNAs encoding three subtypes of the EP receptor, i.e. EP1, EP3, and EP4, and examined the expression of mRNAs encoding the three isoforms (alpha, beta, and gamma) of the EP3 receptor. Altogether the results show that the expression of IP, FP, EP1, and EP4 receptor mRNAs was considerably more pronounced in pre-adipose cells than in adipose cells, mRNAs encoding the alpha, beta, and gamma isoforms of the EP3 receptor were all exclusively expressed in freshly isolated mature adipocytes. These data may indicate that PGI2, PGF2alpha, and PGE2 may interact directly with specific receptors in pre-adipose cells, whose transduction mechanisms are known to affect maturation related changes. In mature adipocytes, however, the equipment of mRNAs encoding the EP3 receptor isoforms is in agreement with the well known effect of PGE2 on adenylate cyclase and lipolysis in mature adipocytes.  相似文献   

9.
10.
Prostaglandin F(2 alpha) (PGF(2 alpha)) receptors are G-protein-coupled receptors consisting of two alternative mRNA splice variants, named FP(A) and FP(B). As compared with the FP(A) isoform, the FP(B) isoform lacks the last 46 amino acids of the carboxyl terminus and, therefore, represents a truncated version of the FP(A). We recently found (Pierce, K. L., Fujino, H., Srinivasan, D., and Regan, J. W. (1999) J. Biol. Chem. 274, 35944-35949) that stimulation of both isoforms with PGF(2 alpha) leads to activation of a Rho signaling pathway, resulting in tyrosine phosphorylation of p125 focal adhesion kinase, formation of actin stress fibers, and cell rounding. Although the activation of Rho and subsequent cell rounding occur at a similar rate for both isoforms, we now report that following the removal of PGF(2 alpha) the reversal of cell rounding is much slower for cells expressing the FP(B) isoform as compared with the FP(A) isoform. Thus, in HEK-293 cells that stably express the FP(A) isoform, the reversal of cell rounding appears to be complete after 1 h, whereas for FP(B)-expressing cells there is essentially no reversal even after 2 h. Similarly, the disappearance of stress fibers and dephosphorylation of p125 focal adhesion kinase following removal of agonist are much slower in FP(B)-expressing cells than in FP(A)-expressing cells. The mechanism of this differential reversal appears to involve a difference in receptor resensitization following the removal of agonist. Based upon whole cell radioligand binding, agonist-induced stimulation of inositol phosphate formation, and mobilization of intracellular Ca(2+), the FP(B) isoform resensitizes more slowly than the FP(A) isoform. These findings suggest that the carboxyl terminus of the FP(A) is critical for resensitization and that the slower resensitization of the FP(B) isoform leads to prolonged signaling. This differential signaling distinguishes the FP(A) and FP(B) receptor isoforms and could be important toward understanding the physiological actions of PGF(2 alpha).  相似文献   

11.
Mast cells are implicated in the pathogenesis of a broad spectrum of immunological disorders. These cells release inflammatory mediators in response to a number of stimuli, including IgE-Ag complexes. The degranulation of mast cells is modified by PGs. To begin to delineate the pathway(s) used by PGs to regulate mast cell function, we examined bone marrow-derived mast cells (BMMC) cultured from mice deficient in the EP(1), EP(2), EP(3), and EP(4) receptors for PGE(2). Although BMMCs express all four of these PGE(2) receptors, potentiation of Ag-stimulated degranulation and IL-6 cytokine production by PGE(2) is dependent on the EP(3) receptor. Consistent with the coupling of this receptor to G(alphai), PGE(2) activation of the EP(3) receptor leads to both inhibition of adenylate cyclase and increased intracellular Ca(2+). The magnitude of increase in intracellular Ca(2+) induced by EP(3) activation is similar to that observed after activation of cells with IgE and Ag. Although PGE alone is not sufficient to initiate BMMC degranulation, stimulation of cells with PGE along with PMA induces degranulation. These actions are mediated by the EP(3) receptor through signals involving Ca(2+) mobilization and/or decreased cAMP levels. Accordingly, these studies identify PGE(2)/EP(3) as a proinflammatory signaling pathway that promotes mast cell activation.  相似文献   

12.
The effect of Gi/o protein-coupled receptors on adenylyl cyclase type 2 (AC2) has been studied in Sf9 insect cells. Stimulation of cells expressing AC2 with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to a twofold stimulation of cAMP synthesis that could be blocked with the protein kinase C inhibitor GF109203X. Activation of a coexpressed alpha2A-adrenoceptor or muscarinic M4 receptor inhibited the stimulation by TPA almost completely in a pertussis toxin-sensitive manner. Activation of Gs proteins switched the response of the alpha2A-adrenoceptor to potentiation of prestimulated AC2 activity. The potentiation, but not the inhibition, could be blocked by a Gbetagamma scavenger. A novel methodological approach, whereby signalling through endogenous G proteins was ablated, was used to assess specific G protein species in the signal pathway. Expression of Go proteins (alphao1 + beta1gamma2) restored both the inhibition and the potentiation, whereas expression of Gi proteins (alphai1 + beta1gamma2) resulted in a potentiation of both the TPA- and the Gs-stimulated AC2 activity. The data presented supports the view of AC2 as a molecular switch and implicates this isoform as a target for Go protein-linked signalling.  相似文献   

13.
Prostaglandin F(2alpha) (PGF(2alpha)) exerts its biological effects by binding to and activating FP prostanoid receptors. These receptors, which include two isoforms, the FP(A) and FP(B), have been cloned from a number of species and are members of the superfamily of G-protein-coupled receptors. Previous studies have shown that the activation of FP receptors leads to phosphatidylinositol hydrolysis, intracellular calcium release, and activation of protein kinase C. Here, we demonstrate that PGF(2alpha) treatment of 293-EBNA (Epstein-Barr nuclear antigen) cells that have been stably transfected with either the FP(A) or FP(B) receptor isoforms leads to changes in cell morphology and in the cell cytoskeleton. Specifically, cells treated with PGF(2alpha) show retraction of filopodia and become rounded, and actin stress fibers are formed. Pretreatment of the cells with bisindolylmaleimide I, a protein kinase C inhibitor, has no effect on the PGF(2alpha)-induced changes in cell morphology, although it does block the effects of phorbol myristate acetate on cell morphology. On the other hand, the PGF(2alpha)-induced changes in cell morphology and formation of actin stress fibers can be blocked by pretreatment of the cells with C3 exoenzyme, a specific inhibitor of the small G-protein, Rho. Consistent with FP receptor induced formation of actin stress fibers and focal adhesions, FP(A) receptor activation also leads to rapid (within two minutes) tyrosine phosphorylation of p125 focal adhesion kinase (FAK) which can be blocked by pretreating the cells with C3 exoenzyme. Taken together, these results suggest that the FP receptor isoforms are coupled to at least two second messenger pathways, one pathway associated with protein kinase C activation, and the other with activation of Rho.  相似文献   

14.
Prostaglandin F(2alpha) (PGF(2alpha)) is produced during myocardial inflammation and many of the insults that trigger contractile dysfunction also activate prostaglandin synthesis and production. However, although PGF(2alpha) plays a significant role in the cardiac response to inflammation, the effect of this particular compound on the heart was largely studied at the cellular level and probably no due attention was paid to the effect of PGF(2alpha) on the whole heart contractility. Therefore, in the present study we have investigated the effect of PGF(2alpha) on isolated right ventricle of the rat heart. PGF(2alpha) (1nM-1microM) induced concentration-dependent decrease of the amplitude of contractions of the ventricular muscle. Real time RT-PCR has revealed that prostaglandin FP receptors are expressed in the rat myocardium and the level of expression was similar to those of creatine kinase and adenylate kinase, which are proteins abundantly present in the heart. An antagonist of FP receptors, PGF(2alpha) dimetilamide (10nM), abolished negative inotropic effect induced by PGF(2alpha). To examine the possibility that PGF(2alpha) could activate non-FP prostaglandin receptor, we have measured the level of expression of all known prostaglandin receptors in the rat heart. These experiments have shown that the order of expression of prostaglandin receptors in the rat heart is FP>EP1=TP>EP4>EP3>DP=IP. Based on the obtained results we conclude that PGF(2alpha) induces negative inotropic effect on rat heart by activating FP prostaglandin receptors. This effect of PGF(2alpha) could contribute to cardiac dysfunction in conditions of systemic and myocardial inflammation.  相似文献   

15.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   

16.
17.
Prostanoids comprising prostaglandins (PGs) and thromboxanes (TXs) have been shown to play physiological and pathological roles in zebrafish. However, the molecular basis of zebrafish prostanoid receptors has not been established. Here, we demonstrate that there exist at least five ‘contractile’ (Ca2+-mobilizing) and one ‘inhibitory’ (Gi-coupled) prostanoid receptors in zebrafish; five ‘contractile’ receptors consisting of two PGE2 receptors (EP1a and EP1b), two PGF receptors (FP1 and FP2), and one TXA2 receptor TP, and one ‘inhibitory’ receptor, the PGE2 receptor EP3. [3H]PGE2 specifically bound to the membranes of cells expressing zebrafish EP1a, EP1b and EP3 with a Kd of 4.8, 1.8 and 13.6 nM, respectively, and [3H]PGF specifically bound to the membranes of cells expressing zebrafish FP1 and FP2, with a Kd of 6.5 and 1.6 nM, respectively. U-46619, a stable agonist for human and mouse TP receptors, significantly increased the specific binding of [35S]GTPγS to membranes expressing the zebrafish TP receptor. Upon agonist stimulation, all six receptors showed an increase in intracellular Ca2+ levels, although the increase was very weak in EP1b, and pertussis toxin abolished only the EP3-mediated response. Zebrafish EP3 receptor also suppressed forskolin-induced cAMP formation in a pertussis toxin-sensitive manner. In association with the low structural conservation with mammalian receptors, most agonists and antagonists specific for mammalian EP1, EP3 and TP failed to work on each corresponding zebrafish receptor. This work provides further insights into the diverse prostanoid actions mediated by their receptors in zebrafish.  相似文献   

18.
Interactions between cyclic adenosine monophosphate (cAMP) and Ca2+ are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP3R) to IP3. We show that PTH communicates with IP3R via “cAMP junctions” that allow local delivery of a supramaximal concentration of cAMP to IP3R, directly increasing their sensitivity to IP3. These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP3R, but IP3R2 and AC6 are specifically associated, and inhibition of AC6 or IP3R2 expression by small interfering RNA selectively attenuates potentiation of Ca2+ signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP3R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation.  相似文献   

19.
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.  相似文献   

20.
The cyclooxygenase-prostanoid pathway regulates myometrial contractility through activation of prostanoid receptors on uterine smooth muscles. However, the possible expression of prostanoid receptors on autonomic nerves cannot be excluded completely. The aim of the present study was to clarify the presence of neural prostanoid receptors on adrenergic nerves in the porcine uterine longitudinal muscle. In [(3)H]-noradrenaline-loaded longitudinal muscle strips of porcine uterus, electrical field stimulation (EFS) evoked [(3)H]-noradrenaline release in a stimulation frequency-dependent manner. The EFS-evoked release was completely abolished in Ca(2+)-free (EGTA, 1mM) incubation medium and by tetrodotoxin or omega-conotoxin GVIA, suggesting that [(3)H]-noradrenaline was released from neural components. The EFS-evoked [(3)H]-noradrenaline release was significantly enhanced by treatment with indomethacin. In the presence of indomethacin, PGE(2) and PGF(2alpha), but not PGD(2), inhibited the EFS-evoked [(3)H]-noradrenaline release. Of synthetic prostanoid receptor agonists examined, both U46619 (TP) and sulprostone (EP(1)/EP(3)) decreased the EFS-evoked [(3)H]-noradrenaline release in a concentration-dependent manner, while fluprostenol (FP), BW245C (DP) and butaprost (EP(2)) were almost ineffective. SQ29548 (TP receptor antagonist) blocked the effect of U46619, but SC19220 (EP(1) receptor antagonist) did not change the inhibition by sulprostone or PGE(2). Double immunofluorescence staining using protein gene product 9.5, tyrosine hydroxylase, EP(3) receptor and TP receptor antibodies suggested the localization of EP(3) or TP receptors on adrenergic nerves in the porcine uterus. These results indicated that neural EP(3) and TP receptors are present on adrenergic nerves of the porcine uterine longitudinal muscle. Endogenous prostanoid produced by cyclooxygenase can regulate noradrenaline release in an inhibitory manner through activation of these neural prostanoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号