共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. 总被引:7,自引:0,他引:7
下载免费PDF全文

G Muthukumar S H Suhng P T Magee R D Jewell D A Primerano 《Journal of bacteriology》1993,175(2):386-394
A number of genes have been shown to be transcribed specifically during sporulation in Saccharomyces cerevisiae, yet their developmental function is unknown. The SPR1 gene is transcribed during only the late stages of sporulation. We have sequenced the SPR1 gene and found that it has extensive DNA and protein sequence homology to the S. cerevisiae EXG1 gene which encodes an exo-1,3-beta-glucanase expressed during vegetative growth (C. R. Vasquez de Aldana, J. Correa, P. San Segundo, A. Bueno, A. R. Nebrada, E. Mendez, and F. del Ray, Gene 97:173-182, 1991). We show that spr1 mutant cells do not hydrolyze p-nitrophenyl-beta-D-glucoside or laminarin in a whole-cell assay for exo-1,3-beta-glucanases. In addition to the absence of this enzymatic activity, spr1 mutant spores exhibit reduced thermoresistance relative to isogenic wild-type spores. These observations are consistent with the notion that SPR1 encodes a sporulation-specific exo-1,3-beta-glucanase. 相似文献
2.
CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. 总被引:10,自引:5,他引:10
下载免费PDF全文

C Brenner N Nakayama M Goebl K Tanaka A Toh-e K Matsumoto 《Molecular and cellular biology》1988,8(8):3556-3559
The bcy1 mutation makes the cdc33 start mutant arrest at random points in the cell cycle instead of only at G1. We cloned and sequenced CDC33. This coding sequence is identical to that of the gene encoding the Saccharomyces cerevisiae 24-kilodalton mRNA cap-binding protein, eIF-4E. 相似文献
3.
The gene encoding a major exopolyphosphatase (scPPX1) in Saccharomyces cerevisiae (H. Wurst and A. Kornberg, J. Biol. Chem. 269:10996-11001, 1994) has been isolated from a genomic library. The gene, located at 57 kbp from the end of the right arm of chromosome VIII, encodes a protein of 396 amino acids. Overexpression in Escherichia coli allowed the ready purification of a recombinant form of the enzyme. Disruption of the gene did not affect the growth rate of S. cerevisiae. Lysates from the mutants displayed considerably lower exopolyphosphatase activity than the wild type. The enzyme is located in the cytosol, whereas the vast accumulation of polyphosphate (polyP) of the yeast is in the vacuole. Disruption of PPX1 in strains with and without deficiencies in vacuolar proteases allowed the identification of exopolyphosphatase activity in the vacuole. This residual activity was strongly reduced in the absence of vacuolar proteases, indicating a dependence on proteolytic activation. A 50-fold-lower protease-independent activity could be distinguished from this protease-dependent activity by different patterns of expression during growth and activation by arginine. With regard to the levels of polyP in various mutants, those deficient in vacuolar ATPase retain less than 1% of the cellular polyP, a loss that is not offset by additional mutations that eliminate the cytosolic exopolyphosphatase and the vacuolar polyphosphatases dependent on vacuolar protease processing. 相似文献
4.
5.
Han GS Audhya A Markley DJ Emr SD Carman GM 《The Journal of biological chemistry》2002,277(49):47709-47718
The LSB6 gene product was identified from the Saccharomyces Genome Data Base (locus YJL100W) as a putative member of a novel type II phosphatidylinositol (PI) 4-kinase family. Cell extracts lacking the LSB6 gene had a reduced level of PI 4-kinase activity. In addition, multicopy plasmids containing the LSB6 gene directed the overexpression of PI 4-kinase activity in cell extracts of wild-type cells, in an lsb6Delta mutant, in a pik1(ts) stt4(ts) double mutant, and in an pik1(ts) stt4(ts) lsb6Delta triple mutant. The heterologous expression of the S. cerevisiae LSB6 gene in Escherichia coli resulted in the expression of a protein that possessed PI 4-kinase activity. Although the lsb6Delta mutant did not exhibit a growth phenotype and failed to exhibit a defect in phosphoinositide synthesis in vivo, the overexpression of the LSB6 gene could partially suppress the lethal phenotype of an stt4Delta mutant defective in the type III STT4-encoded PI 4-kinase indicating that Lsb6p functions as a PI 4-kinase in vivo. Lsb6p was localized to the membrane fraction of the cell, and when overexpressed, GFP-tagged Lsb6p was observed on both the plasma membrane and the vacuole membrane. The enzymological properties (pH optimum, dependence on magnesium or manganese as a cofactor, the dependence of activity on Triton X-100, the dependence on the PI surface concentration, and temperature sensitivity) of the LSB6-encoded enzyme were very similar to the membrane-associated 55-kDa PI 4-kinase previously purified from S. cerevisiae. 相似文献
6.
Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae. 总被引:9,自引:11,他引:9
下载免费PDF全文

In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores. 相似文献
7.
8.
Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. 总被引:4,自引:6,他引:4
An alpha-glucosidase activity (SAG) occurs in a/alpha Saccharomyces cerevisiae cells beginning at about 8 to 10 h after the initiation of sporulation. This enzyme is responsible for the rapid degradation of intracellular glycogen which follows the completion of meiosis in these cells. SAG differs from similar activities present in vegetative cells and appears to be a sporulation-specific enzyme. Cells arrested at various stages in sporulation (DNA replication, recombination, meiosis I, and meiosis II) were examined for SAG activity; the results show that SAG appearance depends on DNA synthesis and some recombination events but not on the meiotic divisions. 相似文献
9.
10.
Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM8, a gene of unknown function. phm8Delta yeast showed a decreased LPA-hydrolyzing activity under phosphate-limiting conditions. Overexpression of PHM8 in yeast resulted in an increase in the LPA phosphatase activity in vivo. In vitro assays of the purified recombinant Phm8p revealed magnesium-dependent LPA phosphatase activity, with maximal activity at pH 6.5. The purified Phm8p did not hydrolyze any lipid phosphates other than LPA. In silico analysis suggest that Phm8p is a soluble protein with no transmembrane domain. Site-directed mutational studies revealed that aspartate residues in a DXDXT motif are important for the catalysis. These findings indicated that LPA plays a direct role in phosphate starvation. This is the first report of the identification and characterization of magnesium-dependent soluble LPA phosphatase. 相似文献
11.
12.
The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. 总被引:4,自引:1,他引:4
下载免费PDF全文

E M Weidenhammer M Singh M Ruiz-Noriega J L Woolford Jr 《Nucleic acids research》1996,24(6):1164-1170
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway. 相似文献
13.
A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
Acetyl-CoA hydrolase, catalyzing the hydrolysis of acetyl-CoA, is presumably involved in regulating the intracellular acetyl-CoA pool. Recently, a yeast acetyl-CoA hydrolase was purified to homogeneity from Saccharomyces cerevisiae and partially characterized (Lee, F.-J. S., Lin, L.-W., and Smith, J. A. (1989) Eur. J. Biochem. 184, 21-28). In order to study the biological function and regulation of the acetyl-CoA hydrolase, we cloned and sequenced the full length cDNA encoding yeast acetyl-CoA hydrolase. RNA blot analysis indicates that acetyl-CoA hydrolase is encoded by a 2.5-kilobase mRNA. DNA blot analyses of genomic and chromosomal DNA reveal that the gene (so-called ACH1, acetyl-CoA hydrolase) is present as a single copy located on chromosome II. Acetyl-CoA hydrolase is established to be a mannose-containing glycoprotein, which binds concanavalin A. By measuring the levels of ACH1 mRNA and acetyl-CoA hydrolase activity in different growth phases and by examining the effects of various carbon sources, we have demonstrated that ACH1 expression is repressed by glucose. 相似文献
14.
The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. 总被引:35,自引:11,他引:35
下载免费PDF全文

C A Woolford L B Daniels F J Park E W Jones J N Van Arsdell M A Innis 《Molecular and cellular biology》1986,6(7):2500-2510
pep4 mutants of Saccharomyces cerevisiae accumulate inactive precursors of vacuolar hydrolases. The PEP4 gene was isolated from a genomic DNA library by complementation of the pep4-3 mutation. Deletion analysis localized the complementing activity to a 1.5-kilobase pair EcoRI-XhoI restriction enzyme fragment. This fragment was used to identify an 1,800-nucleotide mRNA capable of directing the synthesis of a 44,000-dalton polypeptide. Southern blot analysis of yeast genomic DNA showed that the PEP4 gene is unique; however, several related sequences exist in yeasts. Tetrad analysis and mitotic recombination experiments localized the PEP4 gene proximal to GAL4 on chromosome XVI. Analysis of the DNA sequence indicated that PEP4 encodes a polypeptide with extensive homology to the aspartyl protease family. A comparison of the PEP4 predicted amino acid sequence with the yeast protease A protein sequence revealed that the two genes are, in fact, identical (see also Ammerer et al., Mol. Cell. Biol. 6:2490-2499, 1986). Based on our observations, we propose a model whereby inactive precursor molecules produced from the PEP4 gene self-activate within the yeast vacuole and subsequently activate other vacuolar hydrolases. 相似文献
15.
The mitochondrial phosphate transporter of Saccharomyces cerevisiae, encoded by MIR1 (YJR077C) gene, shows divergence among the transporters in various eukaryotes. We have characterized another gene, YER053C, that appeared to encode an orthologous mitochondrial phosphate transporter of yeast. The predicted amino acid sequence of the YER053C protein is much more similar to that of mitochondrial phosphate transporters of other species than that of MIR1. RNA gel blot analysis indicated that, like the MIR1 promoter, the YER053C promoter is functional and that its activity varies according to aeration. An MIR1 gene null mutant did not grow on glycerol medium, whereas a YER053C null mutant grew well on the medium, suggesting that the YER053C gene is not essential for the mitochondrial function. YER053C also did not support the growth of the MIR1 null mutant on glycerol. The MIR1 and YER053C proteins were expressed in Escherichia coli and then reconstituted into liposomes. Unlike the proteoliposomes of MIR1, those of YER053C did not exhibit significant phosphate transport activity. Unexpectedly, it was shown that YER053C is localized in vacuoles, not mitochondria, by immunological electron microscopy. These results suggest that, during evolution, yeast lost the function and/or mitochondrial targeting of YER053C and then recruited an atypical MIR1 as the only transporter. 相似文献
16.
The Saccharomyces cerevisiae ACP2 gene encodes an essential HMG1-like protein. 总被引:7,自引:6,他引:7
下载免费PDF全文

The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function. 相似文献
17.
Summary The decay kinetics of mRNA was studied in a yeast temperature-sensitive mutant, ts136, which is defective in cytoplasmic RNA production at 37° C. The disappearance of the synthetic capacity of mRNA was determined by withdrawing equal volumes of ts136 cell culture and pulse-labelling with [35S]methionine at various time intervals after the shift to 37° C from 23° C. The synthesized proteins were separated on a two-dimensional gel electrophoretic system and then quantitatively analyzed for their incorporated radioactivities by scintillation counting. Our results show that yeast mRNAs have divergent functional half-lives ranging from 4.5 to 41 min, with an average value of 22 min. Each mRNA exhibits a simple exponential decay with its own characteristic decay pattern. Of the approximately 500 major polypeptides made by yeast cells, which are detectable on autoradiograms of the gels, 80 were arbitrarily selected and the mRNAs coding for those polypeptides were examined for their decay kinetics. 相似文献
18.
Nature and timing of some sporulation-specific protein changes in Saccharomyces cerevisiae. 总被引:5,自引:6,他引:5
下载免费PDF全文

During meiosis and spore formulation in Saccharomyces cerevisiae, changes that occur in a/alpha diploids, but not in isogenic nonsporulating a/a diploids, have been detected in cellular polypeptides. These were found by the technique of prelabeling growing cells with 35SO4(2-) and suspending them in sulfur-free sporulation medium. Under the conditions used, about 400 polypeptides were detected by two-dimensional gel electrophoresis, and 45 were altered during sporulation; of these, 21 changes were specific to a/alpha strains. These alterations were mainly due to the appearance of new polypeptides or to marked increases in the concentrations of a few polypeptides produced during vegetative growth. They could have been due either to modifications of existing polypeptides present in growing cells or to de novo synthesis of new gene products. They occurred at characteristic times during sporulation; whereas the majority of changes took place early (within the first 6 h in sporulation conditions), there were several changes characterizing the later stages of sporulation. Ten of the 35SO4(2-)-labeled polypeptides were also labeled with 32P in the presence of [32P]orthophosphate; of these, three were previously found to be sporulation specific. One of these was phosphorylated at all stages of sporulation and was labeled when [32P]orthophosphate was added either during growth of the culture of 1 h after transfer to sporulation medium. Another was labeled in the same way by adding 32P at either time, so that by 7 h in sporulation medium it was phosphorylated, but was dephosphorylated by 24 h. The third sporulation-specific peptide was labeled in extracts prepared at 7 h in sporulation medium (but not at 24 h) when [32P]-orthophosphate was added during presporulation growth, but not when [32P]-orthophosphate was added 1 h after transfer of the culture to sporulation medium. This polypeptide appeared early during sporulation; it is probably phosphorylated as it appears and is dephosphorylated at some time between 7 h and 24 h of sporulation. 相似文献
19.
The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase
We have identified a third citrate synthase gene in Saccharomyces cerevisiae which we have called CIT3 Complementation of a citrate synthase-deficient strain of Escherichia coli by lacZ :: CIT3 gene fusions demonstrated that the CIT3 gene encodes an active citrate synthase. The CIT3 gene seems to be regulated in the same way as CIT1 , which encodes the mitochondrial isoform of citrate synthase. Deletion of the CIT3 gene in a Δ cit1 background severely reduced growth on the respiratory substrate glycerol, whilst multiple copies of the CIT3 gene in a Δ cit1 background significantly improved growth on acetate. In vitro import experiments showed that cit3p is transported into the mitochondria. Taken together, these data show that the CIT3 gene encodes a second mitochondrial isoform of citrate synthase. 相似文献