首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most thermal methods for the study of drought responses in plant leaves are based on the calculation of 'stress indices'. This paper proposes and compares three main extensions of these for the direct estimation of absolute values of stomatal conductance to water vapour (gs) using infrared thermography (IRT). All methods use the measured leaf temperature and two environmental variables (air temperature and boundary layer resistance) as input. Additional variables required, depending on the method, are the temperatures of wet and dry reference surfaces, net radiation and relative humidity. The methods were compared using measured gs data from a vineyard in Southern Portugal. The errors in thermal estimates of conductance were of the same order as the measurement errors using a porometer. Observed variability was also compared with theoretical estimates of errors in estimated gs determined on the basis of the errors in the input variables (leaf temperature, boundary layer resistance, net radiation) and the partial derivatives of the energy balance equations used for the gs calculations. The full energy balance approach requires accurate estimates of net radiation absorbed, which may not be readily available in field conditions, so alternatives using reference surfaces are shown to have advantages. A new approach using a dry reference leaf is particularly robust and recommended for those studies where the specific advantages of thermal imagery, including its non-contact nature and its ability to sample large numbers of leaves, are most apparent. Although the results suggest that estimates of the absolute magnitude of gs are somewhat subjective, depending on the skill of the experimenter at selecting evenly exposed leaves, relative treatment differences in conductance are sensitively detected by different experimenters.  相似文献   

2.
The ontogenetic changes in stomatal size, frequency and conductance (gs) on abaxial and adaxial leaf surfaces of sunflower plants (Helianthus annuus L. Russian Mammoth) were examined under controlled environmental conditions. The stomatal frequency on the adaxial and abaxial leaf surfaces decreased with leaf ontogeny and insertion level. The ratio of adaxial to abaxial stomatal frequency did not change with leaf ontogeny and insertion level, and 42–44% of total stomata was apportioned to the adaxial surface. Ontogenetic changes in stomatal pore length were detected and increased with ontogenesis. The stomatal length of both leaf surfaces had linear relationships with leaf area. Ontogenetic changes in gs were similar between the two surfaces. However the adaxial gs was lower than abaxial gs in leaves of higher insertion levels. Conductance had a linear relationship with width x frequency but not with pore area.  相似文献   

3.
Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and assessed whether and why patterns may vary among species. We found large leaf‐to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.  相似文献   

4.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

5.
Use of infrared analyzers to measure water vapor concentrations in photosynthesis systems is becoming common. It is known that sensitivity of infrared carbon dioxide and water vapor analyzers is affected by the oxygen concentration in the background gas, particularly for absolute analyzers, but the potential for large errors in estimates of stomatal conductance due to effects of oxygen concentration on the sensitivity of infrared water vapor analyzers is not widely recognized. This work tested three types of infrared water vapor analyzers for changes in sensitivity of infrared water vapor analyzers depending on the oxygen content of the background gas. It was found that changing from either 0 or 2% to 21% oxygen in nitrogen decreased the sensitivity to water vapor for all three types of infrared water vapor analyzers by about 4%. The change in sensitivity was linear with oxygen mole fraction. The resulting error in calculated stomatal conductance would depend strongly on the leaf to air vapor pressure difference and leaf temperature, and also on whether leaf temperature was directly measured or calculated from energy balance. Examples of measurements of gas exchange on soybean leaves under glasshouse conditions indicated that changing from 21% to 2% oxygen produced an artifactual apparent increase in stomatal conductance which averaged about 30%. Similar errors occurred for `conductances' of wet filter paper. Such errors could affect inferences about the carbon dioxide dependence of the sensitivity of photosynthesis to oxygen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

7.
This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.  相似文献   

8.
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.  相似文献   

9.
Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraulic supply (vein density) and evaporative demand. To test this, we compared the function and anatomy of leaf hydraulic systems in the leaves of a woody angiosperm (Toona ciliata M. Roem.) grown under high and low irradiance in controlled conditions. Our results confirm that in this species, differential leaf expansion regulates the density of veins and stomata such that leaf hydraulic conductance and stomatal conductance remain proportional. A broader sample of field-grown tree species suggested that differences in leaf venation and stomatal traits induced by sun and shade were not regulated by leaf size in all cases. Our results, however, suggest that leaf size plasticity can provide an efficient way for plants to acclimate hydraulic and stomatal conductances to the contrasting evaporative conditions of sun and shade.  相似文献   

10.
Fluorescence and thermal imaging were used to examine the dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves following a decrease in ambient humidity. Patches were not observed in all experiments, and in many experiments the patches were short-lived. In some experiments, however, patches persisted for many hours and showed complex temporal and spatial patterns. Rapidly sampled fluorescence images showed that the measurable variations of these patches were sufficiently slow to be captured by fluorescence images taken at 3-min intervals using a saturating flash of light. Stomatal patchiness with saturating flashes of light was not demonstrably different from that without saturating flashes of light, suggesting that the regular flashes of light did not directly cause the phenomenon. Comparison of simultaneous fluorescence and thermal images showed that the fluorescence patterns were largely the result of stomatal conductance patterns, and both thermal and fluorescence images showed patches of stomatal conductance that propagated coherently across the leaf surface. These nondispersing patches often crossed a given region of the leaf repeatedly at regular intervals, resulting in oscillations in stomatal conductance for that region. The existence of these coherently propagating structures has implications for the mechanisms that cause patchy stomatal behaviour as well as for the physiological ramifications of this phenomenon.  相似文献   

11.
Abstract According to computer energy balance simulations of horizontal thin leaves, the quantitative effects of stomatal distribution patterns (top vs. bottom surfaces) on transpiration (E) were maximal for sunlit leaves with high stomatal conductances (gs) and experiencing low windspeeds (free or mixed convection regimes). E of these leaves decreased at windspeeds > 50 cm s?1, despite increases in the leaf-to-air vapour density deficit. At 50 cm s?1 wind-speed, rapidly transpiring leaves had greater E when one-half of the stomata were on each leaf surface (amphistomaty; 10.16 mmol H2O m?2 s?1) than when all stomata were on either the top (hyperstomaty; 9.34 mmol m?2s?1) or bottom (hypostomaty; 7.02 mmol m?2s?1) surface because water loss occurred in parallel from both surfaces. Hyperstomatous leaves had larger E than hypostomatous leaves because free convection was greater on the top than on the bottom surface. Transpiration of leaves with large g, was greatest at windspeeds near zero when ~60–75% of the stomata were on the top surface, while at high windspeeds E was greatest with, 50% of the stomata on top. For leaves with low gs, stomatal distribution exerted little influence on simulated E values. Laboratory measurements of water loss from simulated hypo-, hyper-, and amphistomatous leaf models qualitatively supported these predictions.  相似文献   

12.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

13.
Kim SH  Lieth JH 《Annals of botany》2003,91(7):771-781
The following three models were combined to predict simultaneously photosynthesis, stomatal conductance, transpiration and leaf temperature of a rose leaf: the biochemical model of photosynthesis of Farquhar, von Caemmerer and Berry (1980, Planta 149: 78-90), the stomatal conductance model of Ball, Woodrow and Berry (In: Biggens J, ed. Progress in photosynthesis research. The Netherlands: Martinus Nijhoff Publishers), and an energy balance model. The photosynthetic parameters: maximum carboxylation rate, potential rate of electron transport and rate of triose phosphate utilization, and their temperature dependence were determined using gas exchange data of fully expanded, young, sunlit leaves. The stomatal conductance model was calibrated independently. Prediction of net photosynthesis by the coupled model agreed well with the validation data, but the model tended to underestimate rates of stomatal conductance and transpiration. The coupled model developed in this study can be used to assist growers making environmental control decisions in glasshouse production.  相似文献   

14.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

15.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

16.
Advanced lines of Pima cotton ( Gossypium barbadense L.) bred for higher yield potential and heat resistance have higher stomata conductance and smaller leaf areas than those of obsolete lines. In controlled experiments, five commercial lines of Pima cotton having increasing lint yield and heat resistance showed a gradient of increasing stomatal conductance and decreasing leaf size. In field experiments, heat-sensitive, low yield Pima lines showed a lower stomatal conductance than high yielding, advanced lines. This indicates that selection for high yield potential and heat resistance has imposed a selection pressure for higher stomatal conductance and smaller leaf areas. The higher stomatal conductance and smaller leaf area in the advanced lines resulted in a lower leaf temperature in both controlled environments and in the field. The largest leaf temperature differences between obsolete and advanced lines were observed in the afternoon. These differences coincided with the largest differences in stomatal conductance and the highest air temperatures. Measurements of stomatal conductance and leaf temperature in field-grown progeny from a cross between the advanced line, Pima S-6. and the obsolete line, Pima 32, showed that genetically determined differences in stomatal conductance resulted in corresponding differences in leaf temperature. None of the altered physiological traits were selected for in the breeding program, indicating that selection for the desired agronomic traits imposed selection pressures on the altered physiological traits. The increases in stomatal conductance and decreases in leaf area could represent an integrated response to selection pressures on enhanced evaporative cooling, ensuing from selection for heat resistance.  相似文献   

17.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

18.
Abstract. A novel technique to record the variability of stomatal aperture over the leaf surface is described. This combines observations of leaf surfaces using low-temperature scanning electron microscopy (LTSEM), with digital image analysis to produce the most accurate aperture measurements obtained to date. Leaf samples are rapidly immobilized by cryo-fixation in liquid nitrogen and stored in a purpose-built cryo-storage system. Specimens can be collected in the field, remote from the cryopreparation system, and stored for up to several weeks before being examined on the LTSEM. The advantages of this method are that the time frame of the measurements is accurately known, and is identical for all stomatal apertures in a sample, and the precision of the measurements is not limited by the resolving power of the microscope. Measurements of stomatal aperture were obtained from leaves of field grown Avena fatua using the above procedure. Leaf surface conductance (gsur) was determined by porometry immediately before cryo-fixation of the same region of the leaf. Measurements of aperture size showed a high degree of variability within each specimen, with coefficients of variation similar to those found in previous studies. Stomatal conductance (gs) was calculated from stomatal dimensions using formulae derived elsewhere. A linear regression between the computed values of gs and porometric estimates of gsur showed good agreement with the regression line passing through the origin with a slope of 1.0 (R2=0.96). Applications of the experimental system are discussed.  相似文献   

19.
叶片气孔不仅是植物平衡光合-蒸腾关系的重要门户,也是影响大气碳循环与水循环的关键结构。分析热岛效应下福州市乔木、灌木、草本3种生活型和常绿、落叶2种叶习性植物的气孔性状间的差异及其与其他叶功能性状间的权衡关系有助于探究不同类型植物在热环境下的适应策略。以福州市区的自然和半自然植被为研究对象,测定441个植物样本的气孔特征、化学计量特征和形态特征,结果表明:(1)3种生活型、2种叶习性植物的气孔长度(SL)、气孔密度(SD)差异显著(P<0.05),潜在气孔导度指数(PCI)不存在显著差异(P>0.05)。草本的SL高于灌木和乔木,乔木的SD最高,灌木次之,草本最低;落叶植物的SL高于常绿植物,SD低于常绿植物。(2)SLSD间的权衡关系稳定存在于3种生活型和2种叶习性植物中,且随着不同生活型和落叶习性植物的生态策略而呈现各异的权衡特征,即当SL一定时,乔木的SD最大,灌木的SD最小,常绿植物的SD大于落叶植物。(3)气孔性状和叶片形态、化学计量特征紧密联系,SL与比叶面积(SLA)正相关(P<0.01),与叶面积(LA)负相关(P<0.01);SD与叶氮含量(LNC)、叶磷含量(LPC)、SLA负相关(P<0.01),与LA正相关(P<0.01);PCI与LNC、SLA负相关(P<0.01),与叶厚度(LT)正相关(P<0.05)。(4)复杂的环境是气孔性状变异的重要驱动因素,SL、PCI均与年均温(MAT)负相关(P<0.05)。  相似文献   

20.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号