首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plant-growth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.  相似文献   

2.
Many microbial turnover processes in acidic sandy subtropical soils are still poorly understood. In a 59-day pot and a 189-day laboratory incubation experiment with two West African continuous cereal soils, the effects of 2 mg g?1 root residues were investigated on growth of sorghum seedlings, soil microbial biomass and activity indices, using cowpea, groundnut, pearl millet, maize and sorghum. The effects of root residues were compared with mineral P or mineral P + N treatments and with a non-fertilized control treatment. On the Alfisol (Fada, Burkina Faso), shoot dry mass was always significantly higher than on the Ultisol (Koukombo, Togo). Highest shoot dry mass was observed after application of mineral P + N on the Alfisol and after mineral P alone on the Ultisol. The application of legume root residues led to small and non-significant increases in dry mass production compared to the non-amended control, whereas the application of cereal root residues led to a decline, regardless of their origin (millet, maize or sorghum). Contents of microbial biomass C, microbial biomass N and ergosterol were 75 to 100% higher in the Alfisol than in the Ultisol, while ATP was only 36% higher. Organic amendments increased ergosterol concentrations by up to 145% compared to the control and mineral P application. Microbial biomass C and microbial biomass N increased by up to 50% after application of root residues, but ATP only up to 20%. After application of legume root residues, cumulative CO2 production was similar in both soils with an average of 370?µg CO2-C g?1 over 189 days. After application of cereal root residues, cumulative CO2 production was higher in the Alfisol (530?µg g?1) than in the Ultisol (445?µg g) over 189 days.  相似文献   

3.
The stimulatory role of lumichrome, a rhizosphere metabolite, was assessed on the growth of legume and cereal seedlings. At a very low nanomolar concentration (5 nm), lumichrome elicited growth promotion in cowpea, soybean, sorghum, millet and maize, but not in common bean, Bambara groundnut and Sudan grass. In soybean and cowpea only, 5 nm lumichrome caused early initiation of trifoliate leaf development, expansion in unifoliate and trifoliate leaves, increased stem elongation and, as a result, an increase in shoot and plant total biomass relative to control. Lumichrome (5 nm) also increased leaf area in maize and sorghum, and thus raised shoot and total biomass but there was no effect on the leaf area of the other cereals. Root growth was also stimulated in sorghum and millet by the supply of 5 nm lumichrome. By contrast, the application of a higher dose of lumichrome (50 nm) depressed development of unifoliate leaves in soybean, the second trifoliate leaf in cowpea, and shoot biomass in soybean. The 50 nm concentration also consistently decreased root development in cowpea and millet, but had no effect on the other species. These data show that lumichrome is a rhizosphere signal molecule that affects seedling development in both monocots and dicots.  相似文献   

4.
Bagayoko  M.  Alvey  S.  Neumann  G.  Buerkert  A. 《Plant and Soil》2000,225(1-2):117-127
A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
以高粱连作5年为对照(CK),研究了高粱连作3年轮作苜蓿(T1)和葱(T2),对下茬高粱生长、根际土壤微生物及土壤酶活性的影响.结果表明:与CK相比,轮作改善了高粱地上部的生长;T1增产16.5%,效果明显.轮作也促进了高粱根系的生长,T1和T2处理的高粱总根长是CK的1.3和1.4倍,根总表面积是CK的1.6和1.5倍,根体积是CK的2.2和1.6倍,根系生物量是CK的2.0和1.3倍,T1促进了根系在10 cm以下土层中的分布.借助Biolog法对穗花期根际土壤微生物群落功能多样性分析表明,T1和T2处理根际土壤微生物活性显著高于CK,且Shannon多样性指数分别是CK的1.2和1.1倍;轮作提高了根际土壤蔗糖酶活性.综上,轮作苜蓿比轮作葱更能改善高粱根际土壤环境,提高土壤微生物活性和酶活性,控制高粱连作障碍,提高高粱产量.  相似文献   

6.
Alternative soil management practices are needed in semi-arid West Africa to sustain soil fertility and cereal production while reducing the need for extended fallow periods and chemical fertilizers. An experiment was conducted at the Cinzana Station near Segou, Mali to assess the effects of tillage, crop residue incorporation and legume rotation on the growth and yield of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum L.) for a period of eight years on a loamy sand and a loam soil. The following treatments were compared under tied ridging and the traditional open ridging: continuous cereal with crop residue removed, continuous cereal with crop residue incorporated, cereal in rotation with cowpea (Vigna unguiculata (L.) Waip.), cereal in rotation with sesbania (Sesbania rostrata Bremek. & Oberm.), and cereal in rotation with dolichos (Dolichos lablab L.). Legumes in rotation were incorporated as green manures except cowpea which was removed after each harvest. Tied ridging improved cereal grain yield from 1022 kg ha−1 with open ridging to 1091 kg ha−1 on the loamy sand and from 1554 kg ha−1 to 1697 kg ha−1 on the loam, when averaged across management regimes and years of cropping. Incorporation of cereal residue at the beginning of the rainy season every other year had only small and inconsistent effects on cereal yield. Rotation with cowpea increased cereal grain and stover yields by 18 and 25%, respectively, on the loamy sand, and by 23% and 27%, respectively, on the loam compared to continuous cereal, when averaged across tillage regimes and years. Sesbania and dolichos performed similarly as green manures on both soils. Incorporation of these legumes as green manure at the end of the rainy season increased cereal grain and stover yields by 37% and 49%, respectively, on the loamy sand, and by 27% and 30%, respectively, on the loam, compared to cereal monoculture without organic amendment, when averaged across tillage regimes and years. A significant linear increase in cereal yield was observed during the eight years of the study on the loam soil when sesbania and dolichos green manures were incorporated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Beneficial plant–microbe interactions in the rhizosphere are primary determinants of plant health and soil fertility. The effect of combined inoculation of plant growth-promoting bacteria, Bacillus circulans EB 35, Serratia marcescens EB 67 and Pseudomonas sp. CDB 35 and arbascular mycorrhizal fungi, Glomus spp. on sorghum growth and mycorrhizal colonization was investigated. Plant growth observations taken at 45 days after sowing (DAS) revealed that all the three strains applied along with arbascular mycorrhizae (AM) improved plant biomass from 17 to 20% and mycorrhizal colonization from 25 to 35%. Further studies at 90 DAS also showed improvement in plant growth parameters measured. It was apparent that all the three strains stimulated plant and root growth in combination with AM and infection of sorghum roots with mycorrhizae at 45 DAS was equal to or even greater than the AM + rock phosphate (RP) inoculation at 90 DAS. This shows the possible reduction of AM culturing period to 45 days compared to its 3-month culturing in the pot cultures.  相似文献   

8.
A 3-year field rotation study was conducted to assess the potential of switchgrass (Panicum virgatum) to suppress root-knot nematodes (Meloidogyne arenaria), southern blight (Sclerotium rolfsii), and aflatoxigenic fungi (Aspergillus sp.) in peanut (Arachis hypogaea L.) and to assess shifts in microbial populations following crop rotation. Switchgrass did not support populations of root-knot nematodes but supported high populations of nonparasitic nematodes. Peanut with no nematicide applied and following 2 years of switchgrass had the same nematode populations as continuous peanut plus nematicide. Neither previous crop nor nematicide significantly reduced the incidence of pods infected with Aspergillus. However, pod invasion by A. flavus was highest in plots previously planted with peanut and not treated with nematicide. Peanut with nematicide applied at planting following 2 years of switchgrass had significantly less incidence of southern blight than either continuous peanut without nematicide application or peanut without nematicide following 2 years of cotton. Peanut yield did not differ among rotations in either sample year. Effects of crop rotation on the microbial community structure associated with peanut were examined using indices for diversity, richness, and similarity derived from culture-based analyses. Continuous peanut supported a distinctly different rhizosphere bacterial microflora compared to peanut following 1 year of switchgrass, or continuous switchgrass. Richness and diversity indices for continuous peanut rhizosphere and geocarposphere were not consistently different from peanut following switchgrass, but always differed in the specific genera present. These shifts in community structure were associated with changes in parasitic nematode populations.  相似文献   

9.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

10.
Abstract:  The effects of mixed cropping systems containing maize, sorghum, millet and beans on infestations of cereals by lepidopteran stemborers and on associated parasitoids, as well as on yields and land equivalent ratios (LER) were assessed during four consecutive rainy seasons at two sites in the semi-arid eastern region of Kenya. Systems containing the non-host bean were more efficient in reducing pest densities than those with millet or sorghum only. Higher parasitism in diversified systems compared to monocrops was due to density-dependent effects rather than superior suitability of such systems to parasitoids. The maize–bean system, which had the highest proportion of bean plants, had LERs >1.65 while most other systems had LERs <1. It is concluded that mixed cropping with several cereal species has little advantages in terms of yield loss abatement due to stemborers and land use efficiency. However, including the drought-tolerant crops such as sorghum and millet in the system stabilizes food security in drought-prone areas such as eastern Kenya.  相似文献   

11.
Two sorghum cultivars: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88–97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.Key Words: arbuscular mycorrhiza, root exudate, sorghum, striga, strigolactones, germination  相似文献   

12.
《Biological Control》2000,17(1):11-22
This project is part of work underway in our laboratories to test the hypothesis that the induction of soil suppressiveness to plant parasitic nematodes that occurs following planting of velvetbean (Mucuna deeringiana (Bort) Merr.) is associated with the development of an antagonistic microflora in soils and rhizospheres. The specific objective of this investigation was to examine long-term microbial shifts associated with the use of velvetbean in rotations to control nematodes. A crop rotation study was conducted in microplots, consisting of three crop cycles. Cycle 1 involved planting of either velvetbean or cowpea (Vigna unguiculata L.) in the first spring. Cycle 2 during the next fall and winter was fallow or cover-cropped with wheat (Triticum aestivum L.) or crimson clover (Trifolium incarnatum L.). Cycle 3 the next spring was soybean (Glycine max (L.) Merr.). Populations and species diversity of bacteria and fungi in soils or rhizospheres were investigated at the end of each cropping cycle. Rhizosphere fungal populations were significantly smaller on velvetbean than on cowpea at the end of cycle 1. The use of velvetbean in cycle 1 significantly decreased rhizosphere bacterial populations on crops in cycle 2, compared to treatments which had cowpea in cycle 1. Velvetbean also influenced bacterial diversity, generally increasing frequency of bacilli, Arthrobacter spp. and Burkholderia cepacia, while reducing fluorescent pseudomonads. Some of these effects persisted through cycle 3. Fungal diversity was influenced in cycle 1 by velvetbean; however, effects generally did not persist through cycles 2 and 3. The results indicate that the use of velvetbean in a cropping system alters the microbial communities of the rhizosphere and soil, and they are consistent with the hypothesis that the resulting control of nematodes results from induction of soil suppressiveness.  相似文献   

13.
Polymyxo graminis, a ubiquitous plasmodiophorid obligate root endoparasite, is recognized as the vector of about 15 viruses on cereals and groundnut in temperate and tropical areas. Within the species, five special forms have been distinguished on the basis of specific ribotypes. Three of them occur in tropical areas: P. graminis f.sp. colombiana on rice, P. graminis f.sp. subtropicalis on cereals cropped in the tropics such as maize, pearl millet and sorghum but also on barley and/or wheat, and P. graminis f.sp. tropicalis mainly on maize, pearl millet and sorghum. Their particular host ranges distinguish them significantly from P. graminis f.sp. temperata and P. graminis f.sp. tepida found in temperate areas on barley and wheat. In order to assess whether these special forms commonly infect these cereals, barley and wheat plants were grown under controlled conditions on two soils from Belgium and France and both infested by P. graminis f.sp. temperata and P. graminis f.sp. tepida. The infection of each cereal species by each form was quantified by real-time quantitative PCR with specific primers and Taqman probes. The infection of P. graminis f.sp. temperata was significantly higher on barley than on wheat, whereas the quantities of P. graminis f.sp. tepida on wheat were higher than on barley. These results show that the distinction between these special forms, based on the ribotype, reflects differences in ecological features.  相似文献   

14.
Soil inhabiting pests and rot of feeding roots of sugar beet depending on rotation - Results of a long-term trial Over a period of 17 years a trial was carried out with sugar beet, cereals and oilseed rape in different crop rotations on a field near Göttingen (Lower Saxony). The frequency of sugar beet in the rotation was 17, 25, 33 and 67 %. In absence of beet nematodes, root and sugar yield of the beet decreased after repeated growing of sugar beet in short rotations compared to variants with long rotations. Sugar content and beet quality were only slightly influenced. By applying a bioassay (BW-Test) with young beet plants in the greenhouse it was shown that increasing infections on the tips of rootlets of the beet plants were the cause for decreasing beet yield in close rotations. Mortality of young beet plants and progress of infection in the test indicated roughly the quantity of pathogenic fungi in the soil. In the roots of the bait platits the parasitic fungus Aphanomyces cochlioides predominated. Rate of infection and yield reduction in the field were decisively influenced by weather conditions. Differences in yield between sugar beet grown in a three-year and a four-year rotation, however, were not significant. An occurrence of beet pests depending on crop rotation was stated only for Atomaria linearis and this only in a few years.  相似文献   

15.
Sinaj  S.  Buerkert  A.  El-Hajj  G.  Bationo  A.  Traoré  H.  Frossard  E. 《Plant and Soil》2001,233(1):71-83
Low phosphorus (P) in acid sandy soils of the West African Sudano-Sahelian zone is a major limitation to crop growth. To compare treatment effects on total dry matter (TDM) of crops and plant available P (P-Bray and isotopically exchangeable P), field experiments were carried out for 2 years at four sites where annual rainfall ranged from 560 to 850 mm and topsoil pH varied between 4.2 and 5.6. Main treatments were: (i) crop residue (CR) mulch at 500 and 2000 kg ha–1, (ii) eight different rates and sources of P and (iii) cereal/legume rotations including millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). For the two Sahelian sites with large CR-induced differences in TDM, mulching did not modify significantly the soils' buffering capacity for phosphate ions but led to large increases in the intensity factor (CP) and quantity of directly available soil P (E 1min). In the wetter Sudanian zone lacking effects of CR mulching on TDM mirrored a decline of E 1min with CR. Broadcast application of soluble single superphosphate (SSP) at 13 kg P ha–1 led to large increases in C P and quantity of E 1min at all sites which translated in respective TDM increases. The high agronomic efficiency of SSP placement (4 kg P ha–1) across sites could be explained by consistent increases in the quantity factor which confirms the power of the isotopic exchange method in explaining management effects on crop growth across the region.  相似文献   

16.
The effects of simulated aboveground herbivory and phosphate addition to soil on rhizosphere organisms (arbuscular mychorrhiza (AM), Rhizobium spp., bacteria, protozoa and nematodes) were studied in a 2 by 2 factorial designed pot experiment with Pea plants (Pisum sativum). Measurements were performed on 24 day old plants that were still in the nutrient acquisition phase before flowering. AM colonization and bacterial feeding nematodes were stimulated by high simulated her- bivory especially when plants were phosphate deficient. Total number of nematodes was higher with phosphate deficiency. Furthermore, non-significant peak values in soil respiration, total number of nematodes, and bacterial number were observed in phosphate deficient plants with high simulated herbivory. In phosphate amended plants, fast-growing protozoa and bacterial feeding nematodes decreased at high simulated herbivory. These results support the hypothesis that the plant regulates abundances of both AM and free-living rhizosphere organisms and thereby the amount of plant-available nutrients, according to demand via root exudation. Rhizobium spp. was significantly stimulated by phosphate addition but not affected by simulated herbivory. Metabolites produced by rhizosphere bacteria from plants exposed to high simulated herbivory in phosphate amended soil stimulated seed performance. Possible interactions between protozoa and nematodes in relation to production and composition of bacteria in the rhizosphere are discussed.  相似文献   

17.
Striga spp. are obligate parasitic weeds of tropical cereals and generally have the same host range as rhizospheric bacteria of the genus Azospirillum. Four strains of Azospirillum brasilense, isolated from soil where sorghum is grown, have been tested for their effect on germination of Striga hermonthica seeds and on cereal (Sorghum vulgare) growth. Two out of four strains assayed significantly inhibited germination of the parasite. Moreover, one of the two strains showed a plant growth promoting (PGPR) effect.  相似文献   

18.
Field data collected during the rainy season of two years, 2010 and 2011, were used to determine the per cent plant infestation and stem borer abundance on cultivated cereal crops grown by farmers' in Jere or the Sudan-Sahelian savanna ecological region of Nigeria. Stem borers were recovered using destructive sampling. Mean total per cent plant infestation and stem borer abundance per farmers' field were significantly higher on millet (40% and 25 individuals, respectively) and sorghum (30% and 21 individuals, respectively) than on maize (19% and 13 individuals, respectively). Of the five stem borer species found in this study, Coniesta ignefusalis (Lepidoptera: Pyralidae) (3.5)/Chilo sp. nr. aleniellus (Lepidoptera: Crambidae) (2), Busseola fusca (Lepidoptera: Noctuidae) (3.1)/Sesamia calamistis (Lepidoptera: Noctuidae) (2.4) and S. calamistis (2.9), with significantly higher number of individuals per plant, tended to be more important pests on millet, sorghum and maize crops, respectively. Although, mean total per cent plant infestation and abundance of stem borers in this study were generally moderate, further studies on the effects of different types of cereals intercropping (locally practiced) on stem borer infestation and abundance should ascertain the true importance of these pest species in the Sudan-Sahelian savanna ecological region of Nigeria.  相似文献   

19.
Nitrate concentration and nitrate reductase activity (NRA) were studied in the leaves of soybean (Glycine max), groundnut (Arachis hypogaea and cowpea (Vigna unguiculata) and sorghum (Sorghum bicolor), pearl millet (Pennisetum americanum) and maize (Zea mays) at three nitrogen fertiliser levels in two field experiments. Higher nitrate concentrations were detected in the leaves of groundnut, cowpea and pearl millet than in sorghum and maize. Nitrate content in the leaves and leaf NRA were not related across crop species, nor was a generalised pattern of leaf NRA and leaf nitrate observed within legumes or within cereals. Nitrogen application resulted in higher nitrate availability in the leaves, with varied leaf NRA.  相似文献   

20.
The cereal cyst nematode, Heterodera avenae (Wollenweber, 1924) is one of the most important plant parasitic nematodes of cereals. It is an obligate sedentary endo parasite causing considerable crop losses in wheat, barley and oats worldwide. FMRFamide-like peptides (FLPs) play critical role as neurotransmitters or neuromodulators in the nervous system and proposed as one of the important targets for the plant parasitic nematode management. Therefore, for the first time we have cloned and characterized two neuropeptide genes (flp-12 and flp-16) from the cDNA library of feeding female of H. avenae. Sequence analysis of FLPs revealed that both the neuropeptides are closely related with the parasitic as well as free-living nematodes. The flp-12 contains putative 22 residue long signal peptide at N-terminal suggesting its association with extra-cellular functions, while flp-16 does not contain signal peptide. Besides this, we have found highly conserved motif KFEFIRF in flp-12 and RFGK motif in flp-16. These two flp genes could be interesting and potential targets for functional validation to explore their utility for designing management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号